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Executive Summary 

The progress on the development of Exascale enabling technologies on the EXCELLERAT 

core codes is presented for the first year of the project. The developments have been guided 

by the definition of an individual code development roadmap in collaboration with Work 

Package 2 (WP2) and WP4, so the demonstration of Exascale simulations with the use cases 

can be achieved. From this roadmap, several requirements were identified (see D2.1 

“Reference Applications: Roadmap and Challenges” [1]) and a summary of the activities 

conducted to address these requirements is presented here. Two fundamental activities are 

associated to these developments, Task 3.1 focused on node-level performance and Task 3.2 

on system-level performance engineering. Note that main changes in the evolution of HPC 

systems are occurring at node level. This is a major reason to have a specific task focused on 

this topic. 

In this first year, the activities carried out by the partners on these tasks have been focused on 

auditing the performance at node level (DLR, BSC, KTH, CERFACS), enabling the 

utilization of accelerators through the directives based language OpenACC (BSC, KTH), 

developing new data structures to better exploit new architectures (CERFACS, BSC) and 

developing techniques for the introduction of FPGAs on the CoE’s codes (UEDIN).  

The second major activity is focused on identifying and overcoming bottlenecks at system 

level that will arise on the road to Exascale. In this first year, the activities carried out by the 

partners have been focused on auditing the performance and system level and identify 

bottlenecks (DLR, KTH, CERFACS), improving the strong scaling of the codes (CERFACS, 

KTH) and designing and implementing new distributed memory load balancing strategies 

(BSC). The activities on this WP also include the development of a benchmark suite for each 

code to be able to test and monitor the evolution of the codes, and the development of an 

efficient data transfer and dispatching strategy to operate the codes in an HPC cluster. 

Meshing activities have recently started and a compilation of information from the partners 

involved in these tasks (KTH, CERFACS and BSC) has been conducted.  
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1 Introduction 

The present document is a summary of all activities and achieved results within WP3 in its 

work on Exa-enabling during the first year of the EXCELLERAT project. It provides 

information on the optimizations of the reference applications’ performance at system and 

node levels. In addition, the advances in meshing techniques, the implementation of the data 

layer and the benchmarks developed in the project are presented. The report is divided into 

different Sections that are referred to the different tasks of the EXCELLERAT WP3. This 

deliverable is made from the different contributions of the partners, which have been 

compiled and linked to the requirements of the use cases defined in WP2. 
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2 Task 3.1. Node-level performance optimization  
The main changes in the evolution of HPC systems are occurring at node level. Consequently, 

the complexity associated with unlocking the intra-node performance of computing systems 

has increased substantially. This task addresses all the aspect related with performance at 

node level, including code porting and algorithms refactoring on various architectures. In this 

task, the level of readiness of each core code is analysed and the required developments 

supported. Here after we present the activities carried out in T3.1 for the first twelve months 

of the EXCELLERAT project. 

2.1 Acceleration of Nek5000 kernels based on OpenACC 

During the first year, KTH has focused on improving Nek5000’s GPU performance, which 

has mainly been implemented using OpenACC directives. As a starting point the work was 

based on the proxy-app Nekbone [2], focusing on optimizing the small matrix-matrix 

multiplication kernels (mxm) which constitutes most of the work in Nek5000. In Nekbone, 

these kernels had already been implemented using both OpenACC and CUDA. Starting with 

the OpenACC version, since the implementation is fairly old, the performance could be 

improved up to 40% by reordering the loop directives.  

The CUDA kernel in Nekbone was written in a general fashion without any optimizations for 

a particular polynomial order.  But to achieve good performance for the CUDA kernels the 

mxm operations needs to fit into the GPU’s shared memory, which is not possible for 

polynomial order ten and higher. However, production runs are seldom performed at these 

high orders, therefore those could be limited to ninth order kernels and rewrite them to take 

advantage of shared memory, making them up to 60% faster (Figure 1).  

 
Figure 1: Performance results for Nekbone on a single GPU using 9th order polynomials 

Based on the knowledge gain from tuning Nekbone, similar kernels were identified in 

Nek5000 namely axhelm and multd. Both kernels are quite similar to the ones in Nekbone, 

thus refactoring the OpenACC directives could be performed directly in Nek5000 reducing 

the actual kernel time by 34% and 24% respectively. Given the good experience with CUDA 

kernels in Nekbone the kernels axhelm and multd were also rewritten in Nek5000 using 

CUDA, restricting to polynomials of ninth order. These kernels reduced the runtime even 
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further compared to the reordered OpenACC versions, with 18% faster multd and 31% faster 

axhelm (Figure 2).  

 

 
Figure 2: Optimized kernels in Nek5000 

In the coming period the kernels of Nek5000 will continue being optimized, moving most of 

them to CUDA. However, most of the focus will be on obtaining good system-level 

performance across nodes. 

2.2 Introduction of dynamic data structures in AVBP  

A development required for the use case based on combustion instabilities and emission 

prediction, was to introduce new dynamic data structures in AVBP. This new packaging 

requires extensive validations but also performance evaluation and analysis. Within this task, 

the new releases of AVBP have been tested and optimized on available architectures.  

Furthermore, CERFACS was granted access to the new Tier 1 machine JEANZAY (2x20 

Skylake) from GENCI-IDRIS [3] and an ARM prototype with ThunderX2 processors. The 

performance of AVBP 7.5 released in September 2019 was analysed accounting for 

requirements AVBP R1 (dynamic mesh structures) and R3 (automatic remeshing).   

Porting to Intel processors, has identified a major bottleneck in the previous releases: the -

fPIC option used to generate user define functions (UDF) in the code via dynamic libraries 

disables high level vectorization and reduces performance of the code by up to 30%. The 

issue is being investigated with a bug report set to Intel. UDF are not required for the uses 

cases and can be disabled for now.    

2.3 Unified CPU/GPU vectorization strategy developed in Alya 

The last level of parallelism within Alya consists of a SIMD vectorization on the CPU and 

SIMT in the GPU. A data restructuring has been carried out in EXCELLERAT to optimize 

the performance at this last level for both devices. In the GPU execution model, two 

additional parameters are needed: number of threads and blocks. The workload is divided in 

thousands of threads that are grouped into blocks. Each block containing the same amount of 

threads. The threads within the blocks are essentially executed in SIMD mode, so at this level 

the CPU and GPU optimal data structures follow the same pattern. The GPU manages the 

number of blocks that can keep active depending on the memory requirements of the threads 

(i.e. number of registers, shared memory and number of threads per block).  
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The work carried out at node level in Alya has been focused on generating a new data 

structure to enhance the efficiency of the assembly on both the CPU and GPU devices. 

Firstly, we carry out a data reordering to store contiguously in memory the elements of the 

same kind (tetrahedron, hexahedron, prism, and pyramid), that follow the same integration 

rule and that can be computed simultaneously without race conditions. To meet this last 

condition, classical colouring strategies have been used. Then, we group such elements into 

packs of size PACK_SIZE. Note that zeros are padded in the data structure when elements of 

the same category are not enough to fill a pack. Finally, the assembly runs on each pack of 

elements instead of on every single element. This approach has a two-fold benefit. On the one 

hand, it improves data locality, because it stores elements in dense packs. On the other hand, 

the code exposes the SIMD/SIMT potential and the compiler can leverage more instructions 

for the vectorial unit. We use the common approach for CPUs and GPUs being the 

PACK_SIZE then tuned for each specific device. 

2.3.1 Optimization of PACK_SIZE for the CPU 

The PACK_SIZE can have a significant impact on the CPU performance. Here we show this 

impact for the particular case of an Airplane LES simulation for a mesh of 31.5M elements 

[4]. We have performed the experiments on 10 nodes of the MareNostrum CTE POWER9 

cluster, launching 40 MPI processes per node (i.e., one MPI process per CPU-core). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the speedup obtained when using different values for the pack size in the 

CPU, considering both its definition as a compilation parameter or as a variable of the code. 

The speedup is computed according to the execution time using a pack size of 1 as a 

compilation parameter. The red line with square dots evaluates the improvement in 

performance due to the locality of the data, and it will be related to the length of the cache line 

for the last level cache. The optimum pack size, when used as a variable, is 16 in this 

architecture. If we look at the pack size defined as a compilation parameter, we are evaluating 

the combined benefit of the better data locality and the better use of the vector units. For this 

reason, the performance of the pack size defined as a compilation parameter is always better 

Figure 3: Speed up for different pack sizes, for PACK_SIZE defined as a Fortran 

parameter or a variable 



Public 

Copyright © 2019 Members of the EXCELLERAT Consortium 

 

Project 823691 EXCELLERAT Deliverable D3.1 Page 12 of 31 

than the same size defined as a variable. Note as a summary that the achieved speedup reaches 

3.5x.  

2.3.2 Optimization of PACK_SIZE for the GPU 

The same analysis is shown in Figure 4 for the GPU execution. In this case the optimal 

PACK_SIZE is much larger than the one required for the CPU, something that is expected 

since a GPU needs a critical occupancy to achieve good performance. Finally, in the right part 

of Figure 4 we show the speedup of the GPU vs the CPU execution. In this case we are 

comparing the two POWER9 CPUs composing each node (40 CPU-cores in total) versus the 

performance using 4 GPUs. The Figure also shows different optimizations that we carried on 

the OpenACC based implementation developed to use the accelerators; the final speedup 

achieved is close to 4x. 

 

 
 

 
Figure 4: Left: Speed up for different pack sizes for PACK SIZE for the GPU execution. Right: speedup 

of the GPU execution vs the CPU execution  

Further details of the developments and tests carried out in this task will be available in [4]. 

2.4 FPGA acceleration of the CoEs applications 

In this period, UEDIN has been working on the FPGA acceleration of the CoEs applications. 

Field Programmable Gate Arrays (FPGAs) are configurable chips that can be programmed to 

execute specific functionality in hardware. This is potentially very beneficial for HPC codes 

because, in contrast to running on a CPU, executing directly in hardware can provide 

significantly increased performance at a fraction of the energy usage. Traditionally, FPGAs 

were very difficult to program, requiring the mastery of hardware description languages. 

However, in the past couple of years vendors have made very significant advances in the 

software development eco-system and it is now commonplace to program FPGAs using C or 

C++. 

With the predicted slowdown in Moore’s law, any alternative option to accelerating the CoE’s 

codes is worth exploring. FPGAs are interesting because, not only do they avoid the overhead 

of a generalised microarchitecture, where the programmer can specialise the processing and 

related items such as the cache directly for their application, but also FPGAs can be 

configured to work at arbitrary precision. The latter is important because the HPC community 
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is currently very interested in reduced precision. Whilst the use of FPGAs in HPC is still 

fairly early, there are a number of HPC machines (e.g. the Cray CS500 at Paderborn 

University), which contain this technology, along with all the major cloud vendors. 

As such, a key question for the EXCELLERAT CoE is, moving to Exascale, what role could 

FPGAs play in exploiting our applications for next generation science on future 

supercomputers? We are focussed very much at the node-level here, with one or more PCIe 

FPGA cards plugged into a single node. There are three questions that we have been focusing 

around in order to answer this overarching question: 

1. Can FPGAs provide performance benefits for accelerating HPC codes? 

2. What algorithm level modifications are required to fully take advantage of this 

technology? 

3. What is the state of current software development tooling for FPGAs, and how might 

this be improved to suit the needs of HPC codes? 

Up until this point we have been focussed on accelerating a single stencil-based code, with the 

idea being that the lessons learnt will then easily apply to other HPC codes in the CoE. The 

kernel we have focussed on contains 53 double precision operations per grid cell and accounts 

for around 50% of the runtime of the entire code. From the programming perspective we are 

using High Level Synthesis (HLS), where kernels written in C, C++ or System C, are 

translated into the underlying hardware description level by the tooling. Driven in code by 

pragma style hints, using a high-level language such as C substantially speeds up 

development time in comparison to traditional approaches such as VHDL. This also enables 

application developers to take advantage of the knowledge and experience of the FPGA 

vendor at the hardware level, for instance in the concrete implementation of floating-point 

operations. It should be noted that FPGAs come in all shapes and sizes. For this work we are 

using an ADM-PCIe-8k5 card which combines 16GB on-card DRAM with an Ultrascale 

Kintex FPGA. The big benefit of using a PCI-e based FPGA is, compared to embedded 

FPGAs such as the Zynq family, these can be combined with any x86 CPU and typically 

provide more resources. 

2.4.1 Development of the kernel 

A detailed description of the work done implementing the kernel in C using HLS is provided 

by [5] and [6], which have resulted directly from this work. Table 1 provides a general 

overview of the performance of our HLS kernel (running at 250 Mhz) at various stages of 

optimisation, against the original code running on 1 CPU core (Sandybridge) for a standard 

test-case with 67 million grid cells. The CPU code takes 676.4 ms runtime, and it can be seen 

that the initial port to FPGAs, with the kernel code unchanged from the CPU is over 70 times 

slower. 

Description Runtime (ms) 

Reference CPU code 676.4 

Initial port 51498 

Pipelining loops 14130 

Use of BRAM for caching 1513.2 

Reordering memory access 621.3 

Concurrent load and store to DRAM 189.64 

Match data width to DRAM controller 63.49 

Table 1: Runtime of kernel based on algorithmic changes 
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Table 1 can be thought of as illustrating the performance impact in adopting different 

strategies to optimise the code. These are critically important, because the final version of the 

HLS kernel ends up running over 10 times faster than on the CPU and over 800 times faster 

than the CPU code directly ported to the FPGA initially! To achieve this speed up the code 

has changed very substantially, requiring a significant rethink of the underlying algorithm, 

converting to from a von-neumann to dataflow style of computing. 

The overarching steps we adopted in this optimisation can be explained in a fairly general 

manner, and at this point represent a set of best practice rules that we believe can be applied to 

numerous algorithms. This is important to highlight, as these rules have not been published or 

formalised previously, and many come from in-depth discussions with FPGA vendors. Whilst 

inevitably some specialisation is required on a kernel by kernel basis, building up as a 

community an overarching understanding of the steps required to optimise codes for FPGAs 

is of great benefit and furthermore mirrors efforts of the community a decade ago for GPUs. It 

is the reason why we have focussed on one initial application so far, and it is our strong belief 

that these lessons will now apply to many, if not all, of the CoE applications. 

2.4.2 Performance comparison 

Table 1 illustrates the performance of a single HLS kernel against a single CPU core. 

However, to understand the performance properties of the kernel on FPGAs against CPUs, a 

more in-depth study is required. CPUs contain multiple cores and an FPGA can contain 

multiple HLS kernels, so a multi-core and multi-HLS kernel comparison is more interesting. 

Furthermore, the measurements in Table 1 ignore the cost of data transfer to and from the 

PCIe FPGA card, which could represent a significant fraction of the overall runtime. 

Figure 5 illustrates a performance comparison using a standard test-case of the code with 67 

million grid points. The performance of our FPGA approach is compared against a C version 

of the same algorithm, threaded via OpenMP across the cores of the CPU (Sandybridge, 

Ivybridge, and Broadwell). For all runs the host code was compiled with GCC version 4.8 at 

optimisation level 3 and the results reported are averaged across fifty timesteps. For each 

technology there are two runtime numbers reported in milliseconds. The first, optimal 

performance, illustrates the best performance by threading over all the physical CPU cores (4 

in the case of Sandybridge, 12 in the case of Ivybridge, 18 in the case of Broadwell) or the 

advection kernels (8, as this is the maximum that can fit on the FPGA chip.) We also report a 

four core number, which includes only running over four physical cores, or kernels in the case 

of the FPGA designs, as this is the limit of the Sandybridge CPU and allows a more direct 

comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Speed up for different pack sizes, for PACK_SIZE defined as 

a Fortran parameter or a variable 
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With the optimal performance experiment, our HLS kernels are outperforming 18 cores of 

Broadwell (148 ms against 180 ms), and the other two CPU technologies. Eight HLS kernels 

are outperforming eighteen cores, and whilst it might seem that if we could fit more kernels 

onto the FPGA then performance would be even higher, it should be noted that the overhead 

of DMA transfer accounts for 42% of FPGA runtime at this problem size.  

Figure 6 illustrates how the time, in milliseconds, changes one scales the number of grid cells. 

For our FPGA approach (8 kernels) we report three numbers, the total FPGA runtime, the 

execution time of the kernel alone (FPGA kernel only runtime) and the Direct Memory 

Access (DMA) transfer overhead time (FPGA DMA overhead). We compare against 18 cores 

of Broadwell, and for smaller grid sizes of 1 and 4 million grid cells our approach is 2.59 and 

1.52 times faster than the CPU respectively. The FPGA and CPU are comparable at 16 

million grid points, and the FPGA again outperforms the Broadwell by 1.22 times at 67 

million grid points. However, Broadwell out performs the FPGA approach by 1.23 times at 

268 million grid points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that, at all grid sizes, the FPGA kernel execution time alone is significantly 

smaller than the execution time of 18 Broadwell cores. However, as the problem size 

increases, the waiting for data to be transferred from the host to the device (which is itself 

optimised, see [6] for details) is a source of over 40% overhead at 268 million grid points, 

whereas at a grid size of 1 million points it only accounts for 2% of the total runtime. Based 

upon on-board sensors, the configured but idle total power draw of the ADM-PCIe-8k5 board 

is 28.9 Watts and this increases to 35.7 Watts under full load with the largest problem size 

when our advection kernels are running. The TDP of the Broadwell is 120 Watts, so is 

drawing significantly more power to complete the computation. 

2.4.3 Software development tooling 

Whilst the tooling for programming FPGAs has improved considerably in the past few years, 

it is still not yet fully mature when compared against the environment HPC developers 

commonly enjoy. An example of this is the lack of profiling, where the software development 

tooling estimated that early versions of our HLS kernel were only spending around 20% of 

Figure 6: Runtime of FPGA code (8 kernels) vs 18 cores of Broadwell against grid 

size with a standard test-case. For our FPGA approach we report three numbers: 

the total FPGA runtime, the execution time of the kernel alone (FPGA kernel) and 

the FPGA DMA overhead 
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runtime in computation, but without profiling this could not be validated during execution or 

insight gathered around where the rest of the time was being spent. As such, we developed a 

simple but effective technique which is illustrated in Figure 7. This connects our HLS kernel 

to a specialised profiling block that we also developed, and this profiler connects to a timer. 

Our HLS kernel communicates to the profiler to inform it when blocks of code are entered 

and exited, with the profiler collecting this information and sending it back to the host on 

termination. This approach was required due to limits in HLS which mean that collecting 

accurate timing data and computation cannot be mixed together in a single block. From the 

data gathered, we in-fact deduced that early versions of the HLS kernel were only computing 

for around 5% of the time, and were able to pin-point exactly where in the code the overhead 

lay. 

 

Figure 7: Profiling connection to HLS kernel and timer 

2.4.4 Summary and next steps 

The focus of this ongoing work is to leverage the knowledge and technology developed so far 

and apply this to a wider range of the EXCERLLERAT CoE applications. The optimisation 

methodology developed is applicable to a wide range of codes, and as such we are also 

planning on writing research papers about this, using the CoE codes as benchmarks and test-

cases. Additionally, we have only explored kernels which are double precision floating point, 

and think it will be very interesting to consider alternative precisions and fixed point. This 

will be trivial to accomplish and we believe will significantly aid in accelerating CoE codes. 

There is interest in this work from Xilinx and Alpha Data, both international companies, and 

already both hardware and software development licences have been donated from them. 

Going forwards it is very likely that they will provide us with further FPGA hardware, for 

instance next generation FPGAs that combine the chip with High Bandwidth Memory 

(HBM).  
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3 Task 3.2. System-level performance optimization  
This task is focused on identifying and overcoming bottlenecks at system level. Load 

balancing and communication/synchronization reductions are key aspects to achieve parallel 

performance. Advanced features of MPI such as non-blocking collectives, fault tolerance and 

remote memory access will be considered throughout the project. The developments carried 

out in this task include both implementation optimizations and algorithms refactoring. Here 

after we present the activities carried out in T3.2 for the first twelve months of the 

EXCELLERAT project. 

3.1 Improving strong scalability of FEniCS  

In this reporting period, KTH has mainly focused on improving the strong scalability of 

matrix assembly in FEniCS. For time-dependent problems this has to be done in each time-

step, thus it can quickly become a major bottleneck in a simulation. A key issue during matrix 

assembly is communication latency, in particular for low-order finite elements, at scale with 

few elements per core.   

As a first step, the hybrid MPI+PGAS parallelization of FEniCS has been further developed 

and evaluated (Figure 8). In this branch of FEniCS, the linear algebra backend is changed 

from the MPI based PETSc [7] to a KTH-developed backend written in Unified Parallel C 

(UPC). This new backend stores the sparse matrix in the partitioned global address space, 

accessible by all ranks. With this abstraction, each rank can use low latency one-sided 

communication to fetch remote dependencies during matrix assembly. This greatly improves 

strong scalability of the assembly process, in particular for the very latency sensitive 

situations at scale with low-order elements.  

3.2 Improve strong scalability of AVBP 

Strong scaling of AVBP has been tested on the JeanZay system up to 12k cores with excellent 

performance as demonstrated in Figure 9. Load balancing above 4k cores required the switch 

from ParMetis [8] to Treepart partitioning, based on recursive coordinates bisection, to avoid 

crashes in MPI collective calls. Treepart is a new CERFACS partitioning library to uses the 

system hierarchical structure to reduce communications and map the mapping to the 

node/socket/core distribution.  

Figure 8: Matrix reassembly time for Laplaceôs equation in 3D on a mesh with 317M elements (left). 

Reassembly times for the momentum and continuity equations in an implicit LES solver on a mesh with 

60M elements (right) 
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The tests were performed using the Intel 2019.0.4 compiler and MPI suite and HDF5 1.8.21 

using use case C3U1 [1] without mesh adaptation. Additionally, the code was ported on an 

experimental cluster equipped with thunderx2 processors. Scaling has been tested up to 1024 

MPI tasks so far with adequate results (80% strong scaling). Tests for larger systems are 

expected in Q1 2020 (access to UEDIN and JSC systems have been requested). An early user 

access to the IRENE Joliot Curie AMD extension TGCC-GENCI Tier 0 system has been 

granted for Dec-April.  

3.3 System level dynamic load balancing enabled in Alya 

In this first year of the EXCELLERAT project, a dynamic load balancing strategy has been 

implemented in Alya. This is a runtime mechanism that is executed during the simulation. In 

particular, these developments accomplish the requirement Alya-R2 (“Dynamic load 

balancing”) and is a basic building block for Alya-R3 (“Mesh adaptation”) that requires 

dynamic load balancing to be efficient in parallel, see [1] for details about the requirements. 

The dynamic load balancing strategy implemented in Alya is based on an efficient in-house 

SFC-based mesh practitioner. The partition is repeated with some correction coefficients to 

correct the measured imbalances.  Therefore, it is mandatory that the partition process is fast 

to minimize the overhead of the balancing process. Some optimizations have been 

implemented on the partitioning algorithm, which were recently presented in the SC19 

conference in Denver [9]. Below, in Table 2 we show the partition costs for a mesh of 250M 

elements for Airplane simulations (C2U2). In particular, the performance of the in-house 

partition is compared with the Zoltan library [10] from Sandia National Laboratories. We 

observe that the speedup of our implementation reaches up to 10x. 

 

 

 

 

 

 

Figure 9: Strong scaling for AVBP in the JeanZay system 

(C3U1: static mesh) 
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Table 2: Comparison of the in-hose SFC partitioner with the Soltan library. The case used is a mesh 

around an airplane of 250M elements. 

The efficiency of the partitioning algorithm enables its utilization for dynamic load balancing. 

We have carried out all the developments required to restart Alya online, this means basically 

reallocation of the arrays as well as redistributing data among the MPI processes. An 

illustration of this feature is shown in Figure 10 for an airplane simulation using 24 POWER9 

AC922 CPUs, each one with 20 Cores. In the configuration employed, one MPI-process is 

assigned to each pair of cores, where 2 OmpSs [11] threads are launched. We can observe the 

elapsed time per node with the initial imbalanced distribution (red line) and after the 

balancing process is carried out (blue line). 

 

 

Partitions Nodes 

used 

LB  

in-house 

LB Zoltan  Time  (s) 

in-house 

Time (s) 

Zoltan 

Speedup 

384 8 0.99 1.0 0.25 0.87 3.5x 

768 16 0.99 1.0 0.15 0.54 3.6x 

1536 32 0.99 1.0 0.10 0.48 4.8x 

3072 64 0.99 1.0 0.07 0.50 7.1x 

6144 128 0.99 1.0 0.08 0.79 9.9x 

Figure 10: Normalized elapsed time per MPI rank. Assembly phase of the airplane 

simulation (176M elements mesh) 
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Finally, in Figure 11, we show how the maximum and the minimum time tend to the average 

time through the online balancing process. Further details of the developments and tests 

carried out in this task will be available in [4]. 

3.4 System level performance analysis in CODA 

In 2013, DLR started the implementation of the next generation CFD solver FLUCS. Since 

2018 FLUCS is the basis of a strong partnership between Airbus, ONERA and DLR focusing 

on the development of a common next generation CFD code for aircraft flow predictions. In 

January 2019, the consortium agreed on the name CODA for the common CFD code. 

CODA is still under active development, i.e. it currently includes a subset of the planned 

functionality and its scalability is in the order of thousands of cores. Due to the ongoing 

development and frequently changing functionalities of CODA, one of the main tasks of the 

performance analysis and optimization process, is the continuous re-analysis of the code. For 

instance, in the recent period the internal linear algebra solver was replaced by the newly 

developed Sparse Linear Systems Solver (Spliss). 

The work in CODA focused on five main activities. First, we performed an initial 

performance measurement, analysis and evaluation of CODAs current state (FLUCS-R3). 

This resulted in an internal performance report that includes a detailed analysis of CODA’s 

performance (node-level and system-level), the identification of potential performance issues 

and recommendations for code optimization (FLUCS-T1) [1]. After that, a second 

performance analysis was performed on an improved version of the test case and the results 

internally discussed. For both analyses we used a very small version of the Use Case C6U1 to 

allow a strong scalability analysis at relatively small core counts. Figure 12 highlights some 

analysis results and the speedup for the small test case. 

 

Figure 11: Convergence of the balancing process (176M mesh). Evolution of 

the maximum, minimum and average time for the assembly phase 
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Figure 12: Performance analysis results and speedup for a very small test case designed to test strong 

scalability at low core counts 

Second, we compiled a list of priorities for improving the performance of CODA, which are 

internally documented (FLUCS-T2). We started with their realization and implementation 

(FLUCS-T3). 

Third, we started the integration of basic performance metrics in the user interface of CODA 

and their inclusion in the continuous software integration and review process. This allows 

setting up a common performance baseline and quickly identifying software changes that 

introduce performance degradation. 

Fourth, we performed a study to analyse two different methods for the partitioning of mesh 

data to the processes: the fast-recursive coordinate bisection (RCB) method and the graph 

partitioning method Zoltan [10]. We analysed the impact of both partitioners to identify the 

causes for the different resulting runtime behaviour. 

Fifth, we cooperate with two performance analysis tool providers to extend their tools’ 

functionality to support complex engineering codes like CODA. Since CODA is implemented 

in Python and C++ with a multi-level parallelization via MPI or GASPI and OpenMP, it is a 

challenging application for current performance analysis tools and currently no existing tool 

allows an analysis of all CODA features and parallel programming models.  
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4 Task 3.3. Implementation of advanced meshing 
techniques  

This section describes the activities related to the meshing techniques that have been 

developed during the first year of the project. There are two partners (BSC and CERFACS) 

involved in the development of the adaptive mesh refinement (AMR) with two codes, Alya 

and AVBP. The third partner involved in this task is KTH, as Nek5000 has already this 

capability and the effort is only directed to optimizing this tool for certain conditions, so this 

effort is not reported here, but on WP2 in particular for the deliverable D2.2. 

Despite this task has not started for Alya and only partially started for AVBP, an overview of 

activities planned for the two codes is now described. In the case of Alya, the mesh adaptation 

corresponds to the requirement Alya-R3 in Year 2 that will focus on the implementation of 

adaptivity to the current non-adaptive meshes (parallel dynamic mesh adaptivity, accurate 

mesh adaptivity according to physics). This activity required the achievements of Alya-R1 

(load balance strategy) and Alya-T2 (parallel pre-processing) before starting. As already 

described in the previous sections, these capabilities are available in the code and the mesh 

adaptivity work will start in M13. For the case of AVBP, the effort on mesh adaptivity has 

recently started. The work is based on the AVBP-R1: dynamic mesh structure at runtime, 

AVBP-R2: accurate interpolation methods, AVBP-R4: Incorporate automatic mesh 

refinement and AVBP-R5: remeshing. The activities for AVBP-R4 and AVBP-R5 have 

recently started in M11. 
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5 Task 3.4. Test lab for emerging technologies  
The activities on this task were focused on testing the use cases or kernels representing the 

use cases on emerging technologies. During the first year of the project, PRACE resources 

were allocated for the partners involved in this activity, and despite most of the activities are 

going to start in year 2, some progress was accomplished for testing in ARM-based systems. 

The use of ARM in HPC is of great interest, as it promises to be an important future HPC 

technology, but there are key questions about how best to leverage this for HPC. For instance, 

how do our different applications perform and scale on ARM based systems, what 

modifications are required to these codes to fully take advantage of ARM systems, and how 

do these codes running on ARM compare against x86 based HPC systems. 

Fundamental to all of this is the correct choice of underlying communications library, and we 

have investigated the relative performance differences of these and presented this during an 

invited talk at the MVAPICH User Group in Ohio. We are using Fulhame for this work, 

providing 64 nodes each containing two 32-core Marvel ThunderX2 ARM CPUs (4096 cores 

total), comparing and contrasting the different MPI implementations on AR. These 

implementations were MVAPICH, OpenMPI, and HPE’s MPT, and driving this exploration 

was the investigation of performance and scaling for a number of popular HPC codes, 

including CoE applications. For context, we also compared against a couple of x86-based 

systems, MVAPICH and MPT running on Cirrus, which is an x86 Broadwell system with 

InfiniBand, and ARCHER, a Cray XC30 system with Aries interconnect and Cray’s tuned 

implementation of MPICH. 

There were some really interesting patterns highlighted and, generally speaking, MVAPICH 

was very competitive against the other implementations, for instance on the x86 Cirrus system 

it outperformed MPT, in some cases very significantly. On Fulhame, the performance patterns 

were more nuanced, where in some cases MVAPICH demonstrated some really important 

performance benefits, for instance with 2D pencil decomposed FFT codes as their AlltoAll 

collective significantly out performs what OpenMPI or MPT provide. In other situations, 

OpenMPI or MPT performed slightly better, but it is very important to note that OpenMPI 

had to be configured to select the correct communication protocol and instead MVAPICH 

gave good performance out of the box. The quantitative values are still being worked out. 

The MVAPICH team have not yet fully tuned their technology for ARM, and this is very 

important because MVAPICH contains many advanced algorithms, which suit different 

situations and as ARM systems are so new, then it is likely that rules selecting which 

algorithm to use when, need to be tweaked. A video about the aforementioned invited talk at 

the MVAPICH User Group in Ohio was published by insideHPC [15]. 
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6 Task 3.5. Validation and benchmarking suites  
In order to quantify and evaluate the progress and evolution of the codes after the technical 

developments made in WP3, some benchmarks were defined for each code. This will permit 

to monitor the progress of the codes throughout the life of the project and evaluate the 

performance of the codes respect to the starting day. These benchmark cases or micro-

benchmarks are not expected to be as the use cases of WP2, but they are defined in order to 

expose the bottlenecks of the codes when running the reference applications in WP2. The 

different cases and activities involved in the execution of these benchmarks are provided 

below in Tables 3-7. 

Partner BSC 

Code Alya 

Test case Technically premixed swirling combustor 

Linked use case C2U1 - Emission predictions in engines 

Requirements (WP2) Alya-R1: Fully parallel workflow 

Objective Analysis and optimization of the pre-processing stage 

Short Description 6.1.1.1 The hybrid mesh is based on a combination of 

tetrahedrons, prisms and pyramids with different levels of 

refinement within the domain. Two meshes are 

considered of with 110 million (M1) and 856 million 

(M2) elements respectively. The analysis includes the 

operations going from the mesh reading to the start of the 

time marching. 

Activities Description Start date End date 

A1 6.1.1.2 Performance analysis 

and identification of 

bottlenecks 

M1 M4 

A2 Low level optimizations M5 M8 

A3 6.1.1.3 Algorithms refactoring 

to overcome 

parallelization 

bottlenecks 

M9 M12 

Table 3: Benchmark suite Alya 

Partner CERFACS 

Code AVBP 

Test case Explosion simulation  

Linked use case C3U1 – Explosion simulation  

Requirements (WP2) AVBP-R1: Dynamic mesh structure at runtime  

AVBP-R4:  Efficient remeshing 

Objective 6.1.1.4 Profiling and measurement of simulation time 

requirements pre- mesh adaptation. 

Short Description 6.1.1.5 Static meshes need to be accurate for all stages of a 

simulation.  In this case the mesh is uniformly refined to 

be able to discretize the flame everywhere even though 

the scales to resolve are much large for 90% of the 

domain at a given time step. The analysis will be used as 

a benchmark to assess the gains that will be gained by 

having a dynamic mesh refinement method. 
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Activities Description Start date End date 

A1 6.1.1.6 Introduce dynamic mesh structure in 

the code 

01/01/2019 30/09/2019 

A2 6.1.1.7 Validation of the code using in house 

non-regression tests 

15/06/2019 15/09/2019 

A3 6.1.1.8 Perform a Large Eddy Simulation 

with the new code and measure each 

computing phase time per time-step 

and time to solution 

15/09/2019 31/12/2019 

Table 4: Benchmark suite AVBP 

Partner DLR 

Code FLUCS/CODA 

Test case 6.1.1.9 CFD-solver for aircraft aerodynamics 

Linked use case C6U1 

Requirements (WP2) None 

Objective 6.1.1.10 Analysis and optimization of FLUCS/CODA 

Short Description 6.1.1.11 The use case will demonstrate the CFD solver 

performance and scalability based on an aircraft 

geometry. 

Activities Description Start date End date 

A1 Performance analysis M1 M6 

A2 6.1.1.12 Concepts and implementation for 

potential performance enhancements 

M7 M12 

Table 5: Benchmark suite CODA 

Partner KTH 

Code Nek5000 

Test case 6.1.1.13 AMR simulation of flow over NACA0012 airfoil with 3D 

wing tip 

Linked use case C1U1 – Wing with 3D wing tip 

Requirements (WP2) Nek5000-R3 : Efficient strategies for hex-based meshing of 

complex geometries 

Nek5000-R4 : Proper scheme for element’s geometry description 

and projection of grid points on defined surface 

Objective 6.1.1.14 Pre-processing stage: building hex-based coarse mesh for 

moderately complex geometries 

6.1.1.15 Code initialisation: testing initial AMR pipeline focusing 

on geometrical mesh consistency 

Short Description 6.1.1.16 Performing AMR simulation starts with creating very 

coarse mesh, that would be later refined in the region 

with significant computational error. For hex-based 

meshes with complex geometries this is a challenging 

task. During a run the mesh is dynamically modified by 

adding/removing computational subdomains (elements) 

keeping external domain surfaces unchanged. This 

requires additional geometry correction step based on 3D 

projection.   

Activities Description Start date End date 
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A1 6.1.1.17 3D projection routines for 

NACA0012 profile with rounded 

wing tip 

Mar 2019 Apr 2019 

A2 6.1.1.18 Coarse mesh of NACA0012 profile 

with rounded wing tip 

Apr 2019 May 2019 

A3 6.1.1.19 Initial refinement on wing surface 

(without use of error indicator) 

  

Table 6: Benchmark suite Nek5000 ï (1) 

Partner KTH 

Code Nek5000 

Test case 6.1.1.20 AMR simulation of flow over 3D periodic hill 

Linked use case C1U1 – Wing with 3D wing tip 

Requirements (WP2) Nek5000-R5 : High quality mesh partitioner based on graph 

bisection 

Nek5000-R6 : Efficient pressure preconditioner for non-

conforming, deformed elements 

Objective 6.1.1.21 Code initialisation: testing mesh partitioning using graph 

bisection; testing initialisation of the coarse-grid solver 

for deformed elements 

6.1.1.22 Code executions:  monitoring pressure iteration count for 

different element aspect ratio. 

Short Description 6.1.1.23 A key aspect of the performance of the incompressible 

flow solver is efficient solution of pressure problem, as 

divergence-free constraint is a man source of stiffness in 

the set of equations. In this test we focus on the main 

performance issues e.g. work balance and efficient 

pressure preconditioner. 

Activities Description Start date End date 

A1 6.1.1.24 Merging/adapting existing AMR 

branch with official Nek5000 

repository 

May 2019  

A2 6.1.1.25 Testing different partitioning tools 

(ParMETIS, PARRSB) 

  

A3 6.1.1.26 Improved pressure preconditioners 

for non-conformal meshes using 

AMG 

  

A4 6.1.1.27 Improved pressure preconditioners 

for non-conformal meshes with 

deformed elements 

  

Table 7: Benchmark suite Nek5000 ï (2) 
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7 Task 3.6. Data dispatching through data transfer  
The general goal is to combine data transfer and data management. The vision is to provide a 

new software solution, on which the data, that needs to be calculated, is uploaded, sent to the 

cluster, compiled and executed. Further services could be: 

¶ Possibility to interact with cluster through a Command Line Interface (CLI). 

¶ Visualization of result data. 

¶ Data transmission in encrypted form. 

¶ Fast data transfer due to a data reduction technique.  

¶ Visual feedback on cluster allocation in form of a dashboard. 

The platform will be connected to all HPC systems in the project. At any time, there should 

be traceability of what happens to the data or where the data is located.  

In the first few months, the goal is to develop a prototypical application in which a first real 

HPC use case can be mapped. The first use case will be the use case C2U1 from BSC in 

collaboration with RWTH Aachen, which will be implemented into the system. That means, 

the source code of the solver will be compiled and integrated into the software. When all 

configuration files are available, the actual solver execution will take place and the result data 

is going to be transferred back. For the future, the following feature could be implemented: 

¶ Compression of the returned data 

¶ Data encryption of the transferred content 

¶ Addition of more solvers 

¶ Possibility to connect all HPCs 

 

Figure 13: Conceptual model of the data transfer system 

Figure 13 gives an initial overview of how the new system could look like. The complete 

service should be distributed over three layers. The first layer are the users and the available 

interfaces they can use. For example, there should be a web interface and a small client. The 

web interface could be used to handle smaller amounts of data and the client should perform 

more complex actions like delta building or data compression. With both interfaces it should 

be possible to upload data, configure jobs and download or view the result data.  
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In the second layer, a central distribution mechanism would be installed. This would be a data 

dispatcher which would also be responsible for data management. This layer can either run in 

one of the HPCs or in the cloud, where a very high data throughput is possible - for example 

Google or Amazon cloud services. Of course, the data would not be stored there and only 

passed to the appropriate HPC. The transition between the second and the third layer could be 

controlled either directly via the Internet or, for example, with a Site-2-Site VPN.  

The lowest layer is formed by the individual HPCs on which the code is executed and each of 

these HPCs needs to run a small application, in order to communicate with the second layer.  

Furthermore, the creation of data deltas could contribute to a good data management system. 

Each file will have a unique content identifier which is built for example by 1 MB blocks and 

each of these files has its one hash. In the end there is one big tree with all the hashes. That 

means if a file changes, only the changed blocks and not the whole file has to be transferred. 

Figure 14 represents a first draft of a general HPC workflow, which should be transformed 

onto the new software. 

 

Figure 14: HPC Workflow  

The following description will give a technical overview of how the all-in-one platform is 

built and which technology is used. 

The platform is based on a container-based infrastructure and microservices. Microservices 

are small, autonomous services that have a single job and work together. In order to run the 

networked services in a secure and connected way, Istio [12] is used as service mesh.  

The container architecture in this case is Docker, which is managed by Kubernetes. 

Kubernetes is an open-source system for automating deployment, scaling and management of 

containerized applications. To operate and scale the Kubernetes cluster on an infrastructural 

level, the cloud service provider from Google Cloud is used at the moment. Therefore, the 

package manager Helm is used to provide applications into Kubernetes. 

The programming languages used in the repositories are mainly Java and Typescript. The 

following markup, style and script languages are also partly used: HTML, CSS and 

JavaScript. 
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The whole source code of the platform is managed by a self-hosted GitLab. GitLab offers a 

location for online code storage and collaborative development of software projects. Figure 15 

gives an overview of the project structure. 

 

Figure 15: Project structure 

Each project folder is responsible for single functionality in the platform. For example, the 

"web-ui" provides the web server Nginx, that stores web site files and broadcasts them over 

the internet. The "gateway" and "projects-query" folders contain various applications like 

MongoDB [13] or Micronaut [14].  

Micronaut is used as JVM-based, full-stack framework for building modular microservice 

applications. Gradle is used as build tool behind that assembles the individual components 

into finished JAR files, which are then transformed into docker images using the Java Jib 

plugin. In order for all components to be built successfully, a separate bash script is used to 

build finished docker images from the gateway, project, and Web UI components. 

For storing all the data, the two databases MongoDB and Neo4j are implemented. The 

document database MongoDB stores data in JSON-like documents, meaning fields can vary 

from document to document and data structure can be changed over time. On the other side, 

Neo4j is an open source graph database management system. A graph is a pictorial 

representation of a set of objects where some pairs of objects are connected by links. It is 

composed of two elements - nodes and relationships. 

In order to publish and subscribe to streams of records or to store and process streams and 

events, the platform Apache Kafka is used. It also provides multiple interfaces for writing 

data to Kafka clusters, reading data, importing and exporting data to and from third-party 

systems and it acts as a messaging system between the sender and the receiver. The Kafka 

client sends any event into the project queue, which can then be consumed by anyone. 

To enable messaging, in order to connect and scale the all-in-one platform, the message 

broker RabbitMQ is used. It is a message-queueing software to which all HPCs of the all-in-

one platform are connected to. 
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8 Conclusion 
As a conclusion, the progress on the development of Exascale enabling technologies on the 

EXCELLERAT core codes for the first year of the project has been presented. Most of the 

work has been dedicated to node-level performance and system-level performance 

engineering. The activities carried out by the partners on these tasks have been focused on 

auditing the performance at node and system level, enabling the utilization of accelerators, 

developing new data structures and developing techniques for the introduction of FPGAs on 

the CoE’s codes. Additional focus has been given to improving the strong scaling of the codes 

and designing and implementing new distributed memory load balancing strategies. A 

benchmark suite for each to test and monitor the evolution of the codes has been put in place, 

and the development of an efficient data transfer and dispatching strategy to operate the codes 

in HPC cluster has been accomplished during this first year. Meshing activities have recently 

started and reports and progress will be presented on the progress report of year 2 (D3.2).  
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