H2020-INFRAEDI -20182020

The European Centre of Excellence for Engineering
Applications

Project Number: 823691

D3.1
Report on Exaenabling enhancements and benchmarks

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

The EXCELLERAT project has received funding from the European
research

Uni on’ s Hori zon
grant agreement No 823691

2020

Workpackage: | WP3 Driving ExaHPC Methodologies and
Technologies
Author(s): Daniel Mira BSC
RicardBorrell BSC
lvan Spisso CINECA
Gabriel Staffelbach CERFACS
Thomas Gerhold DLR
Niclas Jansson KTH
Janik Schissler SSC
Gavin Pringle UEDIN
Nicholas Brown UEDIN
Approved by | Executive Centre Managemei 30/11/2019
Reviewer Claudio Arlandini CINECA
Reviewer TomislavSubic ARCTUR
Dissemination :
Public
Level
Date Author Comments Version | Status
20191015 | D. Mira Initial draft V0.1 Draft
20191028 | ALL First round of contributions V0.2 Draft
201911-12 | ALL Additional contributions V0.3 Draft
201911-26 | D. Mira Document submitted to review V1.0 Draft
201911-28 | ALL Updates after internal review, V1.1 Draft
Additional review round
201911-29 | D. Mira Document accepted following V2.0 Final
review
Project 823691 EXCELLERAT Deliverable D3.1 Page? of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

List of abbreviations

CFD ComputationaFluid Dynamics

CLI Command Line Interface

CPU Central Processing Unit

CoE Center of Excellence

CUDA Compute Unified Device Architecture
DMA Direct Memory Access

FPGA Field-Programmable Gate Array
GASPI Global Address Space Programming Interface
GPU Graphics Processing Unit

HPC High-Performance Computing

HLS High Level Synthesis

MPI Message Passing Interface

PETSc Portable, Extensible Toolkit for Scientific Computation
RCB Recursive Coordinate Bisection

SFC Space Filling Curve

Spliss Sparse Linear Systems Solver

TDP Termal Design Power

UDF User Defined Function

UPC Unified Parallel C

VHDL VHSIC Hardware Desciption Langga
VHSIC Very Hich Speed Integrated Circuit
VPN Virtual Private Network

WP Work Package

Project 823691 EXCELLERAT Deliverable D3.1 Page3 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

Executive Summary

The progress othe development oExascale enabling technologies on the EXCELLERAT
core codes is presentéal the first year of the projecthe developments have been guided
by the definition ofan individua code development roadmap in collaboration wWilork
Package 2WP2 and WP4, so the demonstration ofaSgale simulations with the usases

can be achievedFrom this roadmap, several requirements were identified (see D2.1
“Reference ApplicationsRoadmap and Challenge§l]) and a summary of the activities
conducted to address these requirements is presentedTherdundamental activities are
associated to these developments, Task 3.1 focused odevetlperformance and Task23.

on systerrlevel performance engineeringlote that main changes in the evolution of HPC
systems are occurring at node level. This is a major reason to have a specific task focused on
thistopic.

In this first year, the activities carried out by the partners esethasks have been focused on
auditing the performance at node level (DLR, BSC, KTH, CERFAGSblingthe
utilization of accelerators through the directives based language OpefBS&C, KTH),
developing new data structures to better exploit new architectures (CERFACS, BSC) and
developing techniques for the introductionrFdffGAson t he CAdJEDIN). codes (

The second major activitis focused on identifying and overcoming bottldeeeat system

level that will arise on the road to Exascale. In this first year, the activities carried out by the
partners have been focused on auditing the performance and system level and identify
bottlenecks (DLR, KTH, CERFACS), improving the stronglisgpof the codes (CERFACS,

KTH) and designing and implementing new distributed memory load balancing strategies
(BSC).The activities on this WP also include the developmerat l/énchmark suite for each

code to be able to test and monitor the evolutibthe codes, and the development of an
efficient data transfer and dispatching strategy to operate the codms HiPC cluster.
Meshing activities have recently started and a compilation of information from the partners
involved in these taskKTH, CERFACS and BSChas been conducted.

Project 823691 EXCELLERAT Deliverable D3.1 Paged of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

Table of Contents

A [10T [X1 o] o S 8
2 Task 3.1. Noddevel performance optimization..............coovvvveiiiimmmeeeeeeeeeeeeeeeiiee 9
2.1 Acceleration of Nek5000 kernels based on OpenACC...........oevvevvviiieecvrneennnn. 9
2.2 Introduction of dynamic data structures in AVBPR..............cccoiiiiiieeeeii e 10
2.3 Unified CPU/GPU vectorization strategy developed in Alya.............ccccovvvveenn 10
2.3.1 Optimization of PACK_SIZE for the CPU.............ccooiiiiiiiiiee e, 11
2.3.2 Optimization of PACK_SIZE for the GPU..........ccccoiiiiiiiiiiic 12

2.4 FPGA acceleration of the CoEs applications..............cooevvvvvieeeeeeceeieeeeeeeeiiiins 12
2.4.1 Development of the Kernel..........oooo e 13
2.4.2 Performance COMPAIiSQN..........uuuuuiiieiieeeceeeirnniisaaaseeeeeeeeeeessmeniaaaaaaaeaaeaees 14
2.4.3 Software development t00lING.......ccovviiiiiiiiiiiii e 15
2.4.4 Summary and NeXE SLEPS.....cccveieeeeeeiieiiiiieeeie e e e e ee e e e eeeee e mmmr e e e eeeeeerannna 16

3 Task 3.2. Systertevel performance OptimIZation.............ccooveiiiiiiieeniiieiieeeeeeeeeen 17
3.1 Improving strong scalability of FENICS..............cooovviiiiiie e 17
3.2 Improve strong scalability of AVBR...........uuiiiiiiii e 17
3.3 System level dynamic load balancing enabled in Alya...............cccoovveeeeen. 18
3.4 System level performance analysis in CODA...........cccooiiiiiiimemniiieeeeee 20

4 Task 33. Implementation of advanced meshing techniques...............cccveemeeeeeee. 22
5 Task 3.4. Test lab for emerging teChNOIOGIES........evviiiiiiiiiiiieeee e 23
6 Task 3.5. Validation and benchmarking SUILES.............uuiiiiiiiceceviiccee e 24
7 Task 3.6. Data dispatching through data transfer..........ccccoe e eeeeciciiiie e 27
8 CONAUSION.....i ittt e e ettt e e et e e seese et e e e et et e e eaeeeeeeeessmmmeaeaeeeeeeaaeeanaanns 30
S B B LS (=T =T g o3 L U 31

Project 823691 EXCELLERAT Deliverable D3.1 Page5 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

Table of Figures

Figure 1: Performance results for Nekbone on a single GPU using 9th order polynongals

Figure 2: Optimized kernels in Nek5000............coouuiiiiiiiire e eeerna s 10

Figure 3:Speed up for different pack sizes, for PACK_SIZE defined as a Fortran parameter or
AVAMADIE. ... 11

Figure 4: Left: Speed up for different pack sizes for PACK SIZE for the GPU execution.
Right: speedup of the GPU execution vs the @RECUtION..........ccccoevviiiiiiiiiiieeeen. 12

Figure 5: Speed up for different pack sizes, for PACK_SIZE defined as a Fortran parameter or
AVAMADIE. ... 14

Figure 6: Runtime of FPGA code (8 kernels) vs 18 cores of Broadwell against gndtkize
standard testase. For our FPGA approach we report three numbers: the total FPGA
runtime, the execution time of the kernel alone (FPGA kernel) and the FPGA DMA

01V =14 g1 To [P P PP TP PPUPPTTPPPRR 15
Figure 7: Profiling connection to HLS kernel anmher...................cccouvmiimmmnniniiiiiiiine 16
Figure 8: Matrix reassembly time for Laplace
elements (left). Reassembly times for the momentum and continuity equations in an
implicit LES solver on a mesh with 60M elements (right)............cooovviiiiiemeenneeee. 17

Figure 9: Strong scaling for AVBP in the JeanZay system (C3UL1: static mesh)......... 18
Figure 10: Normalized elapsed time per MPI rank. Assembly phase of the airplane simulation

(176M €lementS MESH).......uuuiiiiiiiiiiiii e 19
Figure 11: Convergence of the balancing process (176M mesh). Evolution of the maximum,
minimum and average time for the assembly phase..............cccccciniiiiiciinnnee, 20
Figure 12: Performance analysis results and speedup for a very small tessgasedde test

strong scalability at oW COre COUNIS..........oooviiiiiiiiii e 21
Figure 13: Conceptual model of the data transfer system.............cccccccvccevvvveeiivininnnnn. 27
Figure 14: HPC WOTKFIOW.......oeiiiiiiiiiiiiiee e 28
FIQUIrE 15: ProjeCt SITUCTUIE.......uiiii i i e e eeeee ettt enne e e e e e e e e e 29

Project 823691 EXCELLERAT Deliverable D3.1 Page6 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

Table of Tables

Table 1: Runtime of kernel based on algorithmic changes...........ccccoevivieeciiiiiiiieennn. 13
Table 2: Comparison of the-lmse SFC partitioner with the Soltan library. The case used is a
mesh around an airplane of 250M elements...........ccccovvviiieee e e 19
Table 3: Benchmark SUIte AlYaL.........cccuuiiiiiiiiiieee e 24
Table 4: Benchmark SUItE AVBR...........uuiiiiiiiiiiiiieeeiiiii e 25
Table 5: Benchmark suite CODA.t rene e e e e e e e eeaeeaaeees 25
Table 6: Benchmark suite NEKSOOML)oovvuuruuuiiiiiiii e e e e e e e eeenene e 26
Table 7: Benchmark suite NeK50O@2)oevvvuuuimiiiiiiiieeeeiiiiere e 26

Project 823691 EXCELLERAT Deliverable D3.1 Page7 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

1 I ntroducti on

The present document is a summanyalbfactivities and achieved results within WP3 in its
work on Exaenabling during the first year of the EXCELLERAT project. It provides
information on theoptimizations of the reference applications per f or mamnance a't
node levelsin addition, the advances in meshing techniques, the implementation of the data
layer and the benchmarks developed in the project are pres&htedeport is divided into
different Sections that are referred to the different taskshef EXCELLERAT WP3.This
deliverable is made from the different contributions of the partners, which have been
compiled and linkedo the requirements of the usases defined in WP2.

Project 823691 EXCELLERAT Deliverable D3.1 Page8 of 31

N

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

2 Task 3. 1.evdddeerformance opti mi:

The main changes the evolution of HPC systems are occurring at node level. Consequently,
the complexity associated with unlocking the immde performance of computing systems
has increased substantially. This task addresses all teetagtated with performance at
noce level, including code porting and algorithms refactoangrariousarchitectures. In this
task, the level of readiness of each core csdenalysedand the required developments
supportedHere afterwe present the activities carried out in T3.1 foe first twelve nonths

of the EXCELLERAT project.

2.1 Acceleration of Nek5000 kernels based on OpenACC

During the first yeatK TH has focused on i mproving Nek50
has mainly been implemented using OpenACC directives. As a startingtip@iniork was

based on the proxgpp Nekbone[2], focusing on optimizing the small matiratrix
multiplication kernels roxn) which constitutes most of the work in Nek5000. In Nekhone

these kernels had already been implemented using both OpenACC and Staibikg with

the OpenACC version, since the implementation is fairly old, the performance could be
improved up to 40% by reordering the loop directives.

The CUDA kernel in Nekbone was written in a general fashion without any optimizations for

a particuar polynomial order. But to achieve good performance for the CUDA kernels the
mxmoperations needs to fit into the GPU’ s s
polynomial order ten and higher. However, production runs are seldom performed at these
high orders, therefore those could be limited to ninth order kernels and rewrite them to take
advantage of shared mempnyaking them up to 60% fastéfigurel).

—4—0OpenACC baseline CUDA baseline
250 OpenACC tuned CUDA shared memory

200

wn 150
[a T8
(@]
|
[Ny

© 100

50

0

32 64 128 256 512 1024 2048 4096
ELEMENTS

Figure 1: Performance results for Nekbone ora single GPU using 9th order polynomials

Based on the knowledge gain from tuning Nekbone, similar kemete identied in
Nek5000 namelyaxhelmand multd Both kernels are quite similar to the ones in Nekbone,
thus refactoring the OpenACC directives could be performed directly in Nek5000 reducing
the actual kernel timby 34% and 24% respectively. Given the good eigoee with CUDA
kernels in Nekboneghe kernelsaxhelmand multd were also rewritterin Nek5000using
CUDA, restricting to polynomials of ninth order. These kernels reduced the runtime even

Project 823691 EXCELLERAT Deliverable D3.1 Page9 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

further compared to the reordered OpenACC versions, with 18% faatetand 31% faster
axhelm(Figure2).

400

350

w
o
(=]

28]
[%a]
o

Kerneltime (us)
=]
w1 (=]
o o

100

50

multd axhelm
W OpenACC (baseline) OpenACC (reorderd) CUDA
Figure 2: Optimized kernels in Nek5000

In the coming periodhe kernels oNek5000will continue being optimizedmoving most of
them to CUDA. However, most othe focus will be on obtaining good systéswel
performance across nodes.

2.2 Introduction of dynamic data structures in AVBP

A development required for the use cdmesedon combustion instabilities and emission
prediction, vas tointroducenew dynamic data structures in AVBP. This new packaging
requires extensive validations but also performance evaluation and analysis. WithasKhis t
the new releases of AVBP haumeen tested andptimized on available architectures.
Furthermore CERFACS wasgranted access to the new Tier 1 machine JEANZAY (2x20
Skylake) from GENGIDRIS [3] and an ARM prototype with ThunderX2 processdrse
performance of AVBP 7.5 released in September 20&% analysedaccounting for
requirements AVBP R1 (dynamic mestnuctures) and R3 (automatic remeshing).

Porting to htel processors, hadentified a major bottleneck in the previous releases:-the
fPIC option used to generate user define functi®isF) in the code via dynamic libraries
disables highevel vectoization and reduces performance of the code by up to 30%. The
issue is being invegiated with a bug report set totél. UDF are not requicefor the uses
cases and can be disabled for now.

2.3 Unified CPU/GPU vectorization strategy developed in Alya

The last level of parallelism within Alya consists of a SIMectorization on the CPlEnd

SIMT in the GPU.A data restructurindgnas been carriedut in EXCELLERAT to optimize

the performance at this last levidr both devicesIn the GPU execution model, two
additional parameters are neededmber ofthreads and blocks. The workload is divided in
thousands of threads that are grouped blocks. Each block containintbe same amount of
threads. The threads within the bleekeessentiallyexecuted in SIMDmode, so at this level

the CPU and GPU optimal data structufedow the same patterriThe GPU manages the
number of blocks that can keep active depending on the memory requirements of the threads
(i.e. number of registers, shared memory and numbereddbrper block).

Project 823691 EXCELLERAT Deliverable D3.1 PagelOof 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

The work carried out at node level in Alya has been focused on geneaatiegy data
structure to enhame the efficiency of the asséhg on both the CPU and GPU devices
Firstly, we carry out a data reordering to store udusly in merory the elementsf the

same kind (tetrahedron, hexahedron, prism, and pyraihd) follow the saméntegration

rule and that can be computed simultaneously without race condiflansneet this last
condition classicalcolouring strategies have beeneadas Then, we group such elements into
packs of size PACKSIZE. Note that zeros are padded in the data structure when elements of
the same category are not enough to fill a paakalRi, the assembly runs on eggfick of
elements instead of on every singlement. This approach has a tfetd benefit. On the one

hand, it improves data locality, because it stores elements in dense packs. On the other hand,
the code exposes the SIMD/SIMT potential and the compiler can leverage more instructions
for the vectaial unit. We use thecommon approach for CPUs and GPUbesing the

PACK _SIZE then tuned for each specific device.

2.3.1 Optimization of PACK_SIZE for the CPU

The PACK_SIZEcan have a significant impact ¢ime CPUperformance. Here we show this
impact br theparticular case of anifplane LES simulation for a mesh of 31.5lements
[4]. We have performed the experiments on 10 nodes oMdreNostrum CTEPOWER9
cluster, launching 40 MPI processes per node (i.e., one MPI proce3Bdeore.

3.5
3
2.5
= 2
o)
& a5l s
144
l.'
0.5 i .

PACK SIZE: parameter —aA—
PACK SIZE: variable S -

124 8 16 32 64
PACK SIZE

Figure 3. Speed up for different pack sizes, for PACK_SIZE defined as Bortran
parameter or a variable

Figure 3 shows the speedup obtained when using different values for the padk $iwe

CPU, considering both its definition as a compilation parameter or as a varidabée cafde

The speedup is cagmted according to the execution time using a pack size of 1 as a
compilation parameterThe red line with square dot®valuate the improvement in
performance due to the locality of the data, and it will be related to the length of the cache line
for the last level cache. The optimum pack size, when used as a variable, is 16 in this
architecture. If we look at the pack size defined as a compilation parameter, we are evaluating
the combined benefit of the better data locality and the better use of the waitso For this

reason, the performance of the pack size defined as a compilation parameter is always better

Project 823691 EXCELLERAT Deliverable D3.1 Pagellof 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

than the sme size defined as a variablMote as a summary that the achieved speedup reaches
3.5x%.

2.3.2 Optimization of PACK_SIZE for the GPU

The sane analysis is shown iRigure 4 for the GPU executionin this case the optimal
PACK_SIZE is much larger than the one required for the CPU, something that is expected
sincea GPU needs a critical occupancy to achieve goofbpeanceFinally, in the right part

of Figure 4 we show the speedup of the GPU vs the CPU executiothis case we are
comparing the two POWER9 CPUs composing gamtie (40 CPLtores in total) versus the
performance using 4 GPUs. Thiggure also shows different optimizations that we carried on
the OpenACC based implementation developed to usedbeleratorsthe final speedup
achieved is close to 4x.

1.4 Many element type mesh
1.3 ’ |
1.2 %
E g |
g& 1.1 2
;
1 E 921 -
p O
09| 15
0.8 0 ‘

64 128 192 256 320] 1 CPUL GPU NAIVEL GPU PACK L GPU STREAMS
PACK SIZE (thousands of elements)

Figure 4: Left: Speed up for different pack sizes for PACK SIZE for the GPU execution. Right: speedup
of the GPU execution vs the CPU execution

Further detail®f the developments and tests carried out in this task will be availadle in [

2.4 FPGA acceleration of the CoEs applications

In this period UEDIN has been working on the FPGA acceleration of the CoEs applications.
Field Programmable Gate Arrays (FPGAS) are configurable chips that can be programmed to
execute specific functionalityn hardware. This is potentially very beneficial for HPC codes
because, in contrast to running on a CPU, executing directly in hardware can provide
significantly increased performance at a fraction of the energy usage. Traditionally, FPGAs
were very diffialt to program, requiring the mastery bardware description languages.
However, in the past couple of years vendors have made very significant advances in the
software development e@ystem and it is now commonplace to program FPGAs using C or
C++.

With the predicteglowdowni n Moor e’ s | aw, any alternative
codes is worth exploring. FPGAs are interesting because, not only do they avoid the overhead
of a generalised microarchitecture, where the programmer can specialigotiessing and

related items such as the cache directly for their application, but also FPGAs can be
configured to work at arbitrary precision. Tlagteris important because the HPC community

Project 823691 EXCELLERAT Deliverable D3.1 Pagel?of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

is currently very interested in reduced precision. Whilst ke of FPGAs in HPC is still
fairly early, there are a number of HPC machines (e.g. the Cray CS500 at Paderborn
University), which contain this technology, alongttviall the major cloud vendors.

As such, a key question for the EXCELLERAT CoE is, moumgxascale, what role could
FPGAs play in exploiting our applications for next generation science on future
supercomputers? We are focussed very much at thelewelehere, with one or more PCle
FPGA cards plugged into a single node. There are three questions that we have been focusing
around in order to answer this overarching question:

1. Can FPGAs provide performance benefits for accelerating HPC codes?

2. What algorithm level modifications are recgd to fully take advantage of this
technology?

3. What is the state of current software development tooling for FPGAs, and how might
this be improved to suit the needs of HPC codes?

Up until this point we have been focussed on accelerating a siegleitbasedcode, with the

idea being that the lessons learnt will then easily apply to other HPC codes in the CoE. The
kernel we have focussed on contains 53 double precision operations per grid cell and accounts
for around 50% of the runtime of the entire coBeom the programming perspective we are
using High Level Synthesis (HLS), where kernels written in C, C++ or System C, are
translated into the underlying hardware description level by the tooling. Driven in code by
pragma style hints, using aighlevel language such as C substantially speeds up
development time in comparison to traditional approaches such as VHDL. Th=nalsies
application developers to take advantage of the knowledge and experience of the FPGA
vendor at the hardware level, for inste in the concrete implementation ffating-point
operations. It should be noted that FPGAs come in all shapes and sizes. For this work we are
using anADM-PCle8k5 card which combines 16GB -ward DRAM with an Ultrascale

Kintex FPGA. The big benefit ofising a PCGle based FPGA is, compared to embedded
FPGAs such as the Zynqg family, these can be combined with any x86 CPU and typically
provide more resources.

2.4.1 Development of the kernel

A detailed description of the work done implementing the kernel inili@y$LS is provided

by [5] and [6], which have resulted directly from this workable 1 provides a general
overview of the performance of our HLS kernel (running at 250 Mhz) at various stages of
optimisation, against the original code running on 1 CPU core (Sandybridge) for a standard
testcase with 67 million grid cells. The CPU code také6.8 ms runtime, and it can be seen
that the initial port to FPGAs, with the kernel code unchanged fnenCPU is over 70 times
slower.

Description Runtime (ms)
Reference CPU code 676.4

Initial port 51498
Pipelining loops 14130

Use of BRAM for caching 1513.2
Reordering memory access 621.3
Concurrent load and store to DRAM 189.64
Match data width to DRAM controller 63.49

Table 1: Runtime of kernel based on algorithmic changes

Project 823691 EXCELLERAT Deliverable D3.1 Pagel3of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

Table 1 can be thought of as illustrating the performance impact in adopting different
strategiego optimise the code. These are critically important, because the final version of the
HLS kernel endsip running over 10 times faster than on the CPU and over 800 times faster
than the CPU code directly ported to the FPGA initially! To achieve this speed up the code
has changed very substantially, requiring a significant rethink of the underlying atgorith
converting to from aon-neumanrto dataflowstyle of computing.

The overarching steps we adopted in this optimisation can be explained in a fairly general
manner, and at this point represent a set of best practice rules that we believe can b@applied t
numerous algorithms. This is important to highlight, as these rules have not been published or
formalised previously, and many come froradiepth discussions with FPGA vendors. Whilst
inevitably some specialisation is required on a kernel by kernel, dasising up as a
community an overarching understanding of the steps required to optimise codes for FPGAs
is of great benefit and furthermore mirrors efforts of the community a decade ago for GPUs. It
is the reason why we have focussed on one initialia@pon so far, and it is our strong belief

that these lessons will now apply to many, if not all, of the CoE applications.

2.4.2 Performance comparison

Table 1 illustrates the performance of a single HLS kernel against a single CPU core.
However, to understand the performance properties of the kernel on FPGAs against CPUs, a
more in-depth study is rguired. CPUs contain multiple cores and an FPGA can contain
multiple HLS kernels, so a multiore and multHLS kernel comparison is more interesting.
Furthermore, the measurementsTiable 1 ignore the cost of data transfer to and from the
PCle FPGA card, which could represent a significant fraction of the overall runtime.

Figure5 illustrates a performance comparison using a standarddsstof the code with 67
million grid points. The performance of our FPGA approach is compared against a C version
of the same algahm, threaded via OpenMP across the cores of the CPU (Sandybridge,
Ivybridge, and Broadwell). For all runs the host code was compiled with GCC version 4.8 at
optimisation level 3 and the results reported are averaged across fifty timesteps. For each
techndogy there are two runtime numbers reported in milliseconds. The 6@pdimal
performanceillustrates the best performance by threading over all the physical CPU cores (4
in the case of Sandybridge, 12 in the case of Ivybridge, 18 in the case of Bipadwlee
advection kernels (8, as this is the maximum that can fit on the FPGA chip.) We also report a
four core number, which includes only running over four physical cores, or kernels in the case
of the FPGA designs, as this is the limit of the Sandger CPU and allows a more direct
comparison.

S00

B Optimal performance E Four cores
800

700

600

500

400

Runtime (milliseconds)

Sandybridge lvybridge Broadwell FPGA
Technology

Figure 5: Speed up for different pack sizes, for PACK_SIZE defined a
a Fortran parameter or a variable

Project 823691 EXCELLERAT Deliverable D3.1 Pagel4 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

With the optimal performance experiment, our HLS kernels are outperforming 18 cores of
Broadwell (148 ms against 180 ms), and the other two CPU technologies. Eight HLS kernels
are outperforming eighteen cores, and whilst it might seem that if we couhdrit kernels

onto the FPGA then performance would be even higher, it should be noted that the overhead
of DMA transfer accounts for 42% of FPGA runtime at this problem size.

Figure6 illustrates how the time, in milliseconds, changes one scales the number of grid cells.
For our FPGA approach (8 kernels) we report three numbers, the total FPGA runtime, the
execution time of the kernel alonERGA kernel only runtimeand the Direct Memory
Access DMA) transfer overhead tim&PGA DMA overhead We compare against 18 cores

of Broadwell, and for smaller grid sizes of 1 and 4 million grid cells our approach is 2.59 and
1.52 times faster than the CPU respectively. The FPGA @GRU are comparable at 16
million grid points, and the FPGA again outperforms the Broadwell by 1.22 times at 67
million grid points. However, Broadwell out performs the FPGA approach by 1.23 times at
268 million grid points.

1000 & Broadwell 18-cores runtime

E Total FPGA runtime
100 [FPGA Kernel only runtime
FPGA DMA overhead

=
[=]

Time (milliseconds)
=

e
[

0.01

16M 67M
Number of grid cells

Figure 6: Runtime of FPGA code (8 kernels) vs 18 cores of Broadwell against gr

size with a standard testcase. For our FPGA approach we report three numbers

the total FPGA runtime, the execution time of the kernel alone (FPGA kerneand
the FPGA DMA overhead

It should be noted that, at all grid sizes, the FPGA kernel execution time alone is significantly
smaller than the execution time of 18 Broadwell cores. However, as the problem size
increases, the waiting fafata to be transferred from the host to the device (which is itself
optimised, seef] for details) is a source of over 40% overhead at 268 million grid points,
whereas at a grid size of 1 million points it only accounts for 2% of the total runtime. Based
upon onboard sensors, the configured but idle total power draw of the AQN&8k5 board

is 28.9 Watts and this increases to 35.7 Watts under full load with the largest problem size
when our advection kernels are running. The TDP of the Broadwell is 1&6\Véo0 is
drawing significantly more power to complete the computation.

2.4.3 Software development tooling

Whilst the tooling for programming FPGAs has improved considerably in the past few years,
it is still not yet fully mature when compared against the renvnent HPC developers

commonly enjoy. An example of this is the lack of profiling, where the software development
tooling estimated that early versions of our HLS kernel were only spending around 20% of

Project 823691 EXCELLERAT Deliverable D3.1 Pagel5of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

runtime in computation, but without profiling thiswld not be validated during execution or
insight gathered around where the rest of the time was being spent. As such, we developed a
simple but effective techniquehich is illustrated irFigure7. This connects our HLS kernel

to a specialised profiling block that we also developed, and this profiler connects to a timer.
Our HLS kernel communicates to the profiler to inform it when blocks of code are entered
and exitedwith the profiler collecting this information and sending it back to the host on
termination. This approach was required due to limits in HLS which mean that collecting
accurate timing data and computation cannot be mixed together in a single blockh&rom
data gathered, we4fact deduced that early versions of the HLS kernel were only computing
for around 5% of the time, and were able to-paint exactly where in the code the overhead
lay.

pw_advection 1

s axi_aclk [ap_ck ‘

i Ly axi_protocel_convert 0
5_axi_aresetn ap_rstn | A S
- B B b - in_commands V| Veek 18 output ¥ 45
: — - ck [TIMER BLS e § et
Pw_advection (Pre-Production) = ' m_ax THER BLS + = i .
aprsn capture - aclk .“l M_RK ot

aresetn
AXI Protocol Converter

axi_timer 0

5K CTRL BUS [T |4 5 axi CTRL BUS .
T _:I rlier vaues v || M- [m_axi_dats port
B - profiler_ commands V o e profile_0

Profile (Pre-Production)

oo S AXI
capturetrigl generateoutd
= captumetrigl generateoutl

= freaze pwmi

5 axi_aclk interrupt

5_8¥i_aresetn

Al Timer

Figure 7: Profiling connection to HLS kernel and timer

2.4.4 Summary and next steps

The facus of this ongoing worls to leverage the knowledge and technology developed so far
and apply this to a wider range of the EXCERLLERAT CoE applications. The optimisation
methodology developed is applicablo a wide range of codes, and as such we are also
planning on writing research papers about this, using the CoE codes as benchmarks and test
cases. Additionally, we have only explored kernels which are double precision floating point,
and think it will ke very interesting to consider alternative precisions and fixed point. This
will be trivial to accomplish and we believe will significantly aid in accelerating CoE codes.

There is interest in this work from Xilinx and Alpha Data, both international compaand
already both hardware and software development licences have been donated from them.
Going forwards it is very likely that they will provide us with further FPGA hardware, for
instance next generation FPGAs that combine the chip with High BandWMdthory

(HBM).

Project 823691 EXCELLERAT Deliverable D3.1 Pagel6 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

3 Task.S3y.s2t-eev el performance opti mi

This task is focused on identifying and overcoming bottlenecks at system level. Load
balancing and communication/synchronization reductions are key aspects to achieve parallel
performanceAdvanced features of MPI such as Haocking collectives, fault tolerance and
remote memory access will be considered throughout the project. The developangats

out in this task include both implementation optimizations and algorithms refactoieng.

after we present the activities carried out in T3.2 for the first twelve months of the
EXCELLERAT project

3.1 Improving strong scalability of FEniCS

In this reporting periodKTH has mainly focused on improving the strong scalability of
matrix assembly in FEniCS. For tintependent problems this has to be done in each time
step, thus it can quickly become a major bottleneck in a simulation. A key issue during matrix
assembly is commucation latency, in particular for lowrder finite elements, at scale with

few elements per core.

As a first stepthe hybrid MPI+PGAS parallelization of FEniGfas been further developed

and evaluatedFigure 8). In this branch of FEniCShe linear algebra backend is changed
from the MPI based PETY@] to a KTHdeveloped backend written ldnified Parallel C

(UPQ). This new backend stores the sparse matrix in the partitioned global address space,
accessible by all ranks. With this abstraction, each rank can use low latensydethe
communication to fetch remote dependencies during matrix assehhidygreatly impoves

strong scalability of the assembly process, in particular for the very latency sensitive
situations at scale with lowrder elements.

e MP] i UPC #— MFI (Mom.) > UPC (Mom.) MPI (Con.) =g UPC (Con.)

1,00

1,00

0,10

0,10

Runtime (seconds)
Runtime (seconds)

0,01 0,01
384 768 1536 3072 6144 12288 24576 128 256 512 1024 2048 4096

Cores
Cores

Figure 8: Matrix reassembly time for Laplacebs eq
Reassembly times for the mom&um and continuity equations in an implicit LES solver on amesh with
60M elements (right)

3.2 Improve strong scalability of AVBP

Strong scaling of AVBP has been tested on the JeanZay system up to 12k doecallient
performanceas demonstrated iRigure9. Load balancing above 4k cores required the switch
from PaMetis[8] to Treepart partitioningbased on recursivaordinates bisectiong avoid
crashes in MPI collective calls. Treepart is a new CERFACS patrtitioning library to uses the
system hierarchical structure to reduce communications and map the mapping to the
node/socket/core distribution.

Project 823691 EXCELLERAT Deliverable D3.1 Pagel7 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

The tests were perfomred using thelntel 2019.0.4 compiler andPI1 suite andHDF5 1.8.21

using use case C3U1] without mesh adaptatiorAdditionally, the code \as portedon an
experimental cluster equipped with thunderx2 processors. Scaling has been tested up to 1024
MPI tasks so far with adequate results (80% strong scaling). Tests for larger systems are
expecedin Q1 2020 (access WEDIN and JSC systems have been requested). An early user
access to the IRENE Joliot Curie AMD extension TGGENCI Tier 0 system has been
granted for DedApril.

1,6
& O AVBP 7.5
Ideal
L0012
C
kel
©
2 08
o) o
o
£
= 04 o
°
© i
0

400 800 1600 3200 6400 12800
MPI tasks

Figure 9: Strong scaling for AVBP in the JeanZay system
(C3U1.: static mesh)

3.3 System level dynamic load balancing enabled in Alya

In this first year of the EXCELLERAT projeca dynamic load balancing strategy has been
implemented in Alya. This is a runtime mechanism that is executed during the simulation. In
particular, these developmentsaccomplish the requiremenflya-R 2 (“Dynamic I
bal ancing”) and ilsfora@lyalR&8s i(c* Mewsihl daidagpt lalt o o n”
dynamic load balancing to be efficient in paralkte [1] for details about the requirements

The dynamic load balancing strategy implemented in Alya is based efii@ent in-house
SFCbased meslpractiioner. The partition is repeated with some correction coefficients to
correctthe measured imbalance3 herefore, it is mandatory that the partition process is fast

to minimize the overhead of the balancing process. Some optimizations have been
implementé on the partitioning algorithmwhich were recently presented in the SC19
conference in DenveB]. Below, in Table2 we showthe partition costor a mesh of 250M

elements for Airplane simulations (C2U2). In particuldre performance of the {imouse

partition is compared with the Zoltan libraf$0] from Sandia National Laboratorieg¥/e

observe that the speedup of our implementation reachesli@xt

Project 823691 EXCELLERAT Deliverable D3.1 Pagel8of 31

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Partitions| Nodes LB |LB Zoltan| Time (s)| Time (s) | Speedup
used |in-house in-house| Zoltan
384 8 0.99 1.0 0.25 0.87 3.5x
768 16 0.99 1.0 0.15 0.54 3.6x
1536 32 0.99 1.0 0.10 0.48 4.8x
3072 64 0.99 1.0 0.07 0.50 7.1x
6144 128 0.99 1.0 0.08 0.79 9.9x

Table 2: Comparison of the inrhose SFC partitioner with the Soltan library. The case used is a mesh
around an airplane of 250M elements.

The efficiency of the partitioning algorithm enables its utilization for dynamic load balancing.
We have carried out all the developments required to restart Alya online, this means basically
reallocation of the arrays as well as redistributing data antbeagMPI processes. An
illustration of this feature ishown inFigure10 for anairplane simulation using 24 POWER9
AC922 CPUs, each one with 20 Cores. In the configamagémployed, one MPprocess is
assigned to each pair of cores, wh2@mpSg[11] threads are launched. We can observe the
elapsed time per node with the initimhbalanced distributionred line) and after the
balancing proess is carried out (blue lipe

1.4 | |—Ideal i
——SFC
—— SFC-balanced
1.2} -
S
% 1 ...L'Axnh_yhm e TMAMMAJ\AM MPL\T oy Almm%m
ERN Py v
E
0.8
0.6 [i
| | | | | | | | | | |
0 20 40 60 &0 100 120 140 160 180 200 220 240

MPI rank

Figure 10: Normalized elapsed time per MPI rank. Assembly phase of the airplane
simulation (176M elements mesh)

Project 823691

EXCELLERAT Deliverable D3.1

Pagel9of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

6.5} — Average .
Minumum
6 —— Maximum

3 L | | | | | | | | |
2 4 6 8 10 12 14 16 18
Iteration

Figure 11: Convergence of the balancing process (176M mesh). Evolution
the maximum, minimum and average time for the assembly phase

Finally, in Figure11, we showhow the maximam and the minimam time tend to the average
time through the online balancingoeess. Further details dhe developments and tests
carried out in this task will be available .

3.4 System level performance analysis in CODA

In 2013 DLR started the implementation of the next generation CFD solver FLUCS. Since
2018 FLUCS is the basis of a strong partnership between Airbus, ONERA and DLR focusing
on the development of a common next generation Ck2 ¢or aircraft flow predictions. In
January 201%he consortium agreed on the name CODA for the common CFD code.

CODA is still under active development, i.e. it currently includes a subset of the planned
functionality and its scalability is in the ordef thousands of cores. Due to the ongoing
development and frequently changing functionalities of CODA, one of the main tasks of the
performance analysis and optimization process, is the continua@malysis of the code. For
instance, in the recent peridlde internal linear algebra solver was replaced by the newly
developed Sparse Linear Systems Solver (Spliss).

The work in CODA focused on five main activitiegirst, we performed an initial
performance measurement, analysis and evaluation of CODAs tcsteda (FLUCSR3).

This resulted in an internal performance r e
performance (nodkevel and systerevel), the identification of potential performance issues

and recommendations for code optimization (FLUTIS [1]. After that, a second
performance analysis was performed on an improved version of the test case and the results
internally discussed. For both analyses we used a very small version of the Use Case C6UL to
allow a strong scalability analysis at talaly small core countdrigure 12 highlights some

analysis results and the speedup for the small test case.

Project 823691 EXCELLERAT Deliverable D3.1 Page20 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

= Speedup
= el
ge) = L
o} E
N - . e 13,1
(_ﬁ : 12 j ",” """"""
£
)
c 8 e
[}
£
= 4 & 384
c
2 AL
Oclwl\\\\l\lwlw\\\lwlw
0 9 192 288 384
#Cores
Computation Communication -+-Speedup ~ ——Linear

Figure 12: Performance analysis results and speedup for a very small test case designed to test strong
scalability at low core counts

Second, we compiled a list of priorities for improving the performance of CODA, which are
internally documented (FLUG$2). We started with theirealization and implementation
(FLUCST3).

Third, we started the integration of basic performance metrics in the user interface of CODA
and their inclusion in the continuous software integration and review process. This allows
setting up a common performee baseline and quickly identifying software changes that
introduce performance degradation.

Fourth, we performed a study émalysetwo different methods for the partitioning of mesh

data to the processes: tfastrecursivecoordinate bisection (RCB) method and the graph
partitioning method Zoltafil0]. We analysedhe impact of both partitioners to identify the

causes for the different resulting runtitmehaviour

Fifth, we cooperate with two performance analysis tool pl@sito extend the tools
functionality to support complex engineering codes like CODA. Since CODA is implemented
in Python and C++ with a multevel parallelization via MPIl or GASPI and OpenMP, it is a
challenging application for current performancelgsis tools and currently no existing tool
allows an analysis of all CODA features and parallel programming models.

Project 823691 EXCELLERAT Deliverable D3.1 Page?21 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

4 Task 3. 3. | mpl ement ati on of
techniques

This section describes the activities related to the meshing techniquesatigatbéen
developed during the first year of the projélhere are two partne(8SC and CERFACYS)
involved in the development of the adaptive mesh refinement (AMR) with two ,cAtles

and AVBP. The third partner involved in this task is KT&$ Nek5000 ha already this
capability and the effort is only directed to optimizing this tool for certain conditions, so this
effort is not reported here, but on WP2 in particular for the deliverable D2.2.

Despite this task has not started for Alya and only partsidisted for AVBP anoverview of
activities planned for the two codesnisw describedin the case of Alya, the mesh adaptation
corresponds to the requirement AR in Year2 thatwill focus on the implementation of
adaptivity to the current nomdaptive meshes (parallel dynamic mesh adaptivity, accurate
mesh adaptivity according to physics). This activity required the achievements eRAlya
(load balance strategy) and Alj& (parallel preprocessing) before starg. As already
described in the previous sections, these capabilities are available in the code and the mesh
adaptivity work will start in M13For the case of AVBPhe effort on mesh adaptivityhas
recentlystarted. The work is based on the AVBR: dynamic mesh sicture at runtime,
AVBP-R2: accurate interpolation methods, AVB¥: Incorporate automatic mesh
refinement and AVBHR5: remeshing. The activitiekr AVBP-R4 and AVBRR5 have
recently started in M11.

Project 823691 EXCELLERAT Deliverable D3.1 Page22 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

5 Task 3.4. Test | ab for emerging

The aclivities on this task were focused on tegtithe usecasesor kernels representing the
usecases on emerging technologi€airing the first year of the project, PRACE resources
were allocated for the partners involved in this activity, and despite mdse afctivities are
going to start iryear 2, some progress was accomplished for testing in-ARdd systems.

The use of ARM in HPC is of great interest, as it promises to be an important future HPC
technology, but there are key questions about how béstecage this for HPC. For instance,

how do our different applications perform and scale on ARM based systems, what
modifications are required to these codes to fully take advantage of ARM systems, and how
do these codes running on ARM compare againsba3éd HPC systems.

Fundamental to all of this is the correct choice of underlying communications library, and we

have investigated the relative performance differences of these and presented this during an
invited talk at the MVAPICH User Group in Ohio. &\are using Fulhame for this work,

providing 64 nodes each containing twe@&#e Marvel ThunderX2 ARM CPUs (4096 cores

total), comparing and contrasting the different MPI implementations on AR. These

i mpl ementations were MVAPI Crid drivikgpresreipleration and |
was the investigation of performance and scaling for a number of popular HPC codes,
including CoE applications. For context, we also compared against a couple-b&seb

systems, MVAPICH and MPT running on Cirrushich is anx86 Broadwell system with

InfiniBand, and ARCHERa Cr ay XC30 system with Aries ir
implementation of MPICH.

There were some really interesting patterns highlighted and, generally speaking, MVAPICH
was very competitive against théher implementations, for instanoe the x86 Cirrus system

it outperformed MPT, in some cases very significantly. On Fulh#meeperformance patterns

were more nuanced, where in some cases MVAPICH demonstrated some really important
performance benefitdor instance with 2D pencil decomposed FFT codes as AltiéiAll
collective significantly out performs what OpenMPI or MPT provide. In other situations
OpenMPI or MPT performed slightly better, but it is very important to note that OpenMPI
had to be anfigured to select the correct communication protocol and instead MVAPICH
gave good performanaaut of the boxThe quantitative values are still being worked out.

The MVAPICH team have not yet fully tuned their technology for ARM, and this is very
important because MVAPICH contains many advanced algorithmisch suit different
situations and as ARM systems are so new, then it is likely that rules selecting which
algorithm to use whemeed to be tweaked video aboutthe aforementionethvited talk at

the MVAPICH User Group in Ohiwas published by insideHPQ5].

Project 823691 EXCELLERAT Deliverable D3.1 Page23of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

6 Task 3.5. Val i dati on and benchma

In order to quantify and evaluate the progress and evolution of the codes after the technical
developments made in WP3, some benchmarks were defined for eaci lugdsill permit

to monitor the progress of the codes throughout the life of the projece\aidate the
performance of the codes respect to the starting @lagse benchmark cases or micro
benchmarks @ not expected to be as the gsses of WP2, but they are defined in order to
expose the bottlenecks of the codes when running the referepkeatpns in WP2.The
different cases and activities involved in the execution of these benchmargsoaided
belowin Tables 37.

Partner BSC
Code Alya
Test case Technically premixed swirling combustor
Linked usecase C2U1- Emission predictions iengines
Requirements (WP2) | Alya-R1: Fully parallel workflow
Objective Analysis and optimization of the pprocessing stage
Short Description 6.1.1.1 The hybrid mesh is based on a combination
tetrahedrons, prisms and pyramids with different leve
refinement within the domain. Two meshes
considered of with 110 million (M1) and 856 millic
(M2) elements respectively. The analysis includes
operations going from the mesh reading to the start @
time marching.
Activities Description Start date End date
Al 6.1.1.2 Performance analysis | M1 M4
and identification of
bottlenecks
A2 Low level optimizations M5 M8
A3 6.1.1.3 Algorithms refactoring | M9 M12
to overcome
parallelization
bottlenecks

Table 3: Benchmark suite Alya

Partner CERFACS

Code AVBP

Test case Explosion simulation

Linked use case C3U1- Explosion simulation

Requirements (WP2) | AVBP-R1: Dynamic mesh structure at runtime
AVBP-R4: Efficient remeshing

Objective 6.1.1.4 Profiing and measurement of simulation tir
requirementgre- mesh adaptation.
Short Description 6.1.1.5 Static meshes need to be accurate for all stages

simulation. In this case the mesh is uniformly refine
be able to discretize the flame everywhere even th
the scales to resolve are much large for 90%thef
domain at a given time step. The analysis will be use
a benchmark to assess the gains that will be gaine
having a dynamic mesh refinement method.

Project 823691 EXCELLERAT Deliverable D3.1 Page24 of 31

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Activities Description Start date End date
Al 6.1.1.6 Introduce dynamic mesh structure| 01/01/2019 | 30/09/2019
the code
A2 6.1.1.7 Validation of the code using in hou{ 15/06/2019 | 15/09/2019
nonregression tests
A3 6.1.1.8 Perform a Large Eddy Simulatig 15/09/2019 | 31/12/2019
with the new code and measure e
computing phase time per tins¢ep
and time to solution
Table 4: Benchmark suite AVBP
Partner DLR
Code FLUCS/CODA
Test case 6.1.1.9 CFD-solver for aircraft aerodynamics
Linked usecase C6U1
Requirements (WP2) None

Objective

6.1.1.10Analysis and optimization of FLUCS/CODA

Short Description

6.1.1.11The use case will demonstrate the CFD sol
performance and scalability based on an airg

geometry.
Activities Description Start date End date
Al Performance analysis M1 M6
A2 6.1.1.12Concepts and implementation f M7 M12
potential performance enhancemet
Table 5: Benchmark suite CODA
Partner KTH
Code Nek5000
Test case 6.1.1.13AMR simulation of flow over NACAQ0012 airfoil with 3L

wing tip

Linked usecase

C1U1l-Wing with 3D wing tip

Requirements (WP2)

Nek5000R3 : Efficient strategies fdrex-based meshing of
complex geometries

Nek5000R 4 Proper scheme f
and projection of grid points on defined surface

or (

Objective

6.1.1.14Preprocessing stage: building hé&ased coarse mesh f
moderately complex geometries

6.1.1.15Code nitialisation: testing initial AMR pipeline focusin
on geometrical mesh consistency

Short Description

6.1.1.16Performing AMR simulation starts with creating ve
coarse mesh, that would be later refined in the re
with significant computational error. For hbased
meshes with complex geometries this is a challen|
task. During a run the mesh is dynamicallgdiiied by
adding/removing computational subdomains (eleme
keeping external domain surfaces unchanged.
requires additional geometry correction step based o
projection.

Activities

| Description

| Start date | End date

Project 823691

EXCELLERAT Deliverable D3.1 Page25of 31

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Al 6.1.1.173D projection routines for | Mar 2019 Apr 2019
NACA0012 profile with roundec
wing tip
A2 6.1.1.18Coarse mesh of NACA0012 profi| Apr 2019 May 2019
with rounded wing tip
A3 6.1.1.19Initial refinement on wing surfac
(without use of error indicator)
Table 6: Benchmark suite Nek50007 (1)
Partner KTH
Code Nek5000
Test case 6.1.1.20AMR simulation of flow over 3D periodic hill

Linked usecase

C1U1-Wing with 3D wing tip

Requirements (WP2)

bisection

conforming, deformed elements

Nek5000R5 : High quality mesh partitioner based on graph

Nek5000R6 : Efficient pressure preconditioner for nron

Objective

for deformed elements

6.1.1.21Code initialisation: testing mesh partitioning using gr
bisection; testing initialisation of the coamged solver

6.1.1.22Code executions: monitoringessure iteration count f
different element aspect ratio.

Short Description

pressure preconditioner.

6.1.1.23A key aspect of the performance of the incompress
flow solver is efficient solution of pressure problem,
divergencdree constraint is a man source of stiffness
the set of equations. In this test we focus on the n
performance issues e.g. work balance and effig

Activities Description Start date End date
Al 6.1.1.24Merging/adapting existing AMHA May 2019

branch with official Nek500(

repository
A2 6.1.1.25Testing different partitioning tool

(ParMETIS, PARRSB)
A3 6.1.1.26lmproved pressure preconditione

for nonconformal meshes usin

AMG
A4 6.1.1.27Improved pressure preconditione

for nonconformal meshes wit

deformed elements

Table 7: Benchmark suite Nek5000Q" (2)

Project 823691 EXCELLERAT Deliverable D3.1 Page26 of 31

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

7 Task

E

3. 6. Data dispatching throu

The general goal is to combine data transfer and data management. The vision is to provide a
new software solution, on which the data, that needs to be calculatgiihasied, sent to the
cluster, compiled and executed. Further services could be:

Possibility to interact with cluster througtfC@mmand Line InterfacgCLlI).
Visualization of result data

Data transmission in encrypted farm

Fast data transfer due talata reduction technique

Visual feedback on cluster allocation in form of a dashboard

The platform will be connected to allR€C systemsn the project. At any time, there should

be traceability of what happens to the data or where the data is located.

In the first few monthsthe goal is to develop a prototypical application in which a first real
HPC use case can be mapped. The first use case wiltiehese cas C2U1 from BSC in
collaboration with RWTHAachen, whichwill be implemented into the systefhat means,

the source code of the solver will be compiled and integrated into the software. When all
configuration files are available, the actual solver execution will take place and the result data
is going to be transferred back. For the future, tlewing feature could be implemented:

T
T
T
T

Compression of the returned data

Data encryption of the transferred content
Addition of more solvers

Possibility to connect all HPCs

OO

Layer 1
Fat Client I Browser Ul I
Layer 2 Dispatcher / Data Handler
Internet $2S VPN
—1] —0 —
— p— —
Layer 3 —3 p— =
— — p—
HPC 1 HPC 2 HPC 3

Figure 13: Conceptual model of the data transfer system

Figure 13 gives an initial overview of how the new system could look like. The complete
service should be distributed over three layers. The first layer are the nddleavailable
interfaces they can use. For example, there should be a web interface and a small client. The
web interface could be used to handle smaller amounts of data and the client should perform
more complex actions like delta building or data coespion. With both interfaces it should

be possible to upload data, configure jobs and download or view the result data.

Project 823691

EXCELLERAT Deliverable D3.1

Page27 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

In the second layer, a central distribution mechanism would be installed. This would be a data
dispatcher which would also be resptesifor data management. This layer can either run in
one of the HPCs or in the cloud, where a very high data throughput is pedsibexample
Google or Amazon cloud services. Of course, the data would not be stored there and only
passed to the appraogte HPC. The transition between the second and the third layer could be
controlled either directly via the Internet or, for example, with a&SEite VPN.

The lowest layer is formed by the individual HPCs on which the code is executed and each of
theseHPCs needs to run a small application, in order to communicate with the second layer.

Furthermore, the creation of data deltas could contribute to a good data management system.
Each file will have a unique content identifier which is built for examglé MB blocks and

each of these files has its one hash. In the end there is one big tree with all the hashes. That
means if a file changes, only the changed blocks and not the whole file has to be transferred.

Figure 14 represents a first draft of a general HPC workflow, which should be transformed
onto the new software.

Post-Processing
® if needed

Only Needed Results Copied Back e
- simulation results i oL A - after simulation

Result Set

|

Solver Compilation =—» Solver Execution

Bob g
o N 1 .
| —L — - only if not pre-compiled y N
- Solver Copied To Cluster =~ *owreecodeiscompled
@ - rsyne, gridftp, scp, git . % —=

Need of HPC resources ~—_ -
- simulation problem T — _

- if needed: pre-processing N

@ Configuration Files Sent To Cluster

- numerical settings, boundary conditions, grids, ...

- information about the required resources (hardware, runtime, memary, ...}

@ Script File Sent To Cluster

Figure 14: HPC Workflow

The following description will give @echnical overview of how the al-one platform is
built and which technology is used.

The platform is based on a contaua&sed infrastructure and microservices. Microservices
are small, autonomous services that have a single job and work togetheterinio run the
networked services in a secure and connected way[12]ies used as service mesh.

The container architecture in this case is Docker, which is managed by Kubernetes.
Kubernetes is an opesource system for automating deploymeegling and management of
containerized applications. To operate and scale the Kubernetes cluster on an infrastructural
level, the cloud service provider from Google Cloud is used at the moment. Therefore, the
package manager Helm is used to provide agfdios into Kubernetes.

The programming languages used in the repositories are mainly Java and Typescript. The
following markup, style and script languages are also partly used: HTML, CSS and
JavaScript.

Project 823691 EXCELLERAT Deliverable D3.1 Page28 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

The whole source code of the platform is managed $gl-hostedGitLab. GitLab offers a
location for online code storage and collaborative development of software prejgate.l5
gives an overview of the project structure.

B chart 8 hpc-query

BB excellerat-cli B® projects-query
Im files-meta-query | web-ui

I gateway B .qitignore

M gitlab-ci-templates B .gitlab-ci.yml

Figure 15: Project structure

Each project folder is responsible for single functionality in the platform. For examele, th
"webui" provides the web server Nginx, that stores web site files and broadcasts them over
the internet. The dateway and 'projectsquery' folders contain various applications like
MongoDB[13] or Micronaut]{14].

Micronaut is used as JVMMased, fullstack framework for building modular microservice
applications. Gradle is used as build tbehind thatassembles the individual components

into finished JAR files, which are then transformed into docker images usengava Jib
plugin. In order for all components to be built successfully, a separate bash script is used to
build finished docker images from the gateway, project, and Web Ul components.

For storing all the data, the two databases MongoDB and Neo4j atememged. The
document database MongoDB stores data in J8k&N\documents, meaning fields can vary

from document to document and data structure can be changed over time. On the other side,
Neo4j is an open source graph database management system. Aigrappictorial
representation of a set of objects where some pairs of objects are connected by links. It is
composed of two elementsiodes and relationships.

In order to publish and subscribe to streams of records or to store and process streams and
everts, the platform Apache Kafka is used. It also provides multiple interfaces for writing
data to Kafka clusters, reading data, importing and exporting data to and frorpattird
systems and it acts as a messaging system between the sender and the Teeckatka

client sends any event into the project queue, which can then be consumed by anyone.

To enable messaging, in order to connect and scale tie-ale platform, the message
broker RabbitMQ is used. It is a messageueing software to which alPCs of the alin-
one platform are connected to.

Project 823691 EXCELLERAT Deliverable D3.1 Page29 of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

8 Concl usi on

As a conclusion, the progress on the development of Exascale enabling technologies on the
EXCELLERAT core codes for the first year of the project has been presést.of the

work has beendedicated tonodelevel performance and systdevel performance
engineering.The activities carried out by the partners oestitasks have been focused on
auditing the performance at nodad systenlevel, enabling the utilization of acceleratprs
develging new data structures and developing techniques for the introductiimGison

t he Co E Additiooabfdcasshas been givenitaproving the strong scaling of the codes

and designing and implementing new distributed memory load balancing ssat&gie
benchmark suite for each to test and monitor the evolution of the baddseemut in place

and the development of an efficient data transfer and dispatching strategy to operate the codes
in HPC clustethas been accomplished chgithis first year Meshing activities have recently
startedand reports and progress will be presented on the progress report of year 2 (D3.2)

Project 823691 EXCELLERAT Deliverable D3.1 Page30of 31

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

9 Ref erences
[l]EXCELLERAT project, D2.1 ®“Reference Appl i cez:

[2] https://github.com/Nek5000/Nekbone
[3] http://www.idris.fr/annonces/annongeanzay-eng.html

[4] R. Borrell, D. Dosimont et alAirplane Simulation using Heterogeneous CPU/GPU co
Execution targeting the POWER9 Architecture. Future Generation of Computer Systems,
under review.

[5] Brown, N 2019, Exploring the acceleration of the Met Office NERC Cloud model using
FPGAs. in ISC High Perfornmae 2019 International Workshops. ISC19 IXPUG Workshop:
Using FPGAs to Accelerate HPC & Data Analytics on hi#aked Systems, Frankfurt,
Germany, 20/06/19.

[6] Brown, N, Dol eman D 2019, It s all about
to boost pgormance. To appear in Fifth International Workshop on Heterogeneous High
performance Reconfigurable Computing (H2RC'19), Denver, USA, 17/11/19

[7] Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil M and Ghosh, Debojyoti
and Smith, Barry F and Zhang, Hong. PETSc/TS: A Modern Scalable ODE/DAE Solver
Library. arXiv preprint arXiv:1806.01437,2018.

[8] A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering.
George Karypis and Vipin Kumar. 10th InRarallel Processing Symposium, pp. 31319,
1996.

[9] R. Borrell, G. Oyarzan, D. Dosimont and G. Houzeaux, Parallel-&%%@d mesh
partitioning and load balancing. Proceedings of ScalA2019: 10th Workshop on Latest
Advances in Scalable Algorithms fbarge Scale Systems, SC19 Denver.

[10] E. G. Boman and U. V. Catalyurek and C. Chevalier and K. D. Devin. The Zoltan and
Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering,
and ColoringScientific Programming20). 2012.

[11] https://pm.bsc.es/ompss

[12] https://istio.io
[13] https://www.mongodb.com

[14] https://micronaut.io

[15] https://insidehpc.com/2019/08¢eerformancecomparisorof-differentmpi-
implementation®n-anarmhpcsystem/

Project 823691 EXCELLERAT Deliverable D3.1 Page31of 31

https://github.com/Nek5000/Nekbone
http://www.idris.fr/annonces/annonce-jean-zay-eng.html
https://pm.bsc.es/ompss
https://istio.io/
https://www.mongodb.com/
https://micronaut.io/
https://insidehpc.com/2019/08/a-performance-comparison-of-different-mpi-implementations-on-an-arm-hpc-system/
https://insidehpc.com/2019/08/a-performance-comparison-of-different-mpi-implementations-on-an-arm-hpc-system/

