

H2020-INFRAEDI -2018-2020

The European Centre of Excellence for Engineering

Applications

Project Number: 823691

D3.1

Report on Exa-enabling enhancements and benchmarks

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 2 of 31

The EXCELLERAT project has received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement No 823691

Workpackage: WP3 Driving Exa-HPC Methodologies and

Technologies

Author(s): Daniel Mira BSC

 Ricard Borrell BSC

 Ivan Spisso CINECA

 Gabriel Staffelbach CERFACS

 Thomas Gerhold DLR

 Niclas Jansson KTH

 Janik Schüssler SSC

 Gavin Pringle UEDIN

 Nicholas Brown UEDIN

Approved by Executive Centre Management 30/11/2019

Reviewer Claudio Arlandini CINECA

Reviewer Tomislav Subic ARCTUR

Dissemination

Level
Public

Date Author Comments Version Status

2019-10-15 D. Mira Initial draft V0.1 Draft

2019-10-28 ALL First round of contributions V0.2 Draft

2019-11-12 ALL Additional contributions V0.3 Draft

2019-11-26 D. Mira Document submitted to review V1.0 Draft

2019-11-28 ALL Updates after internal review,

Additional review round

V1.1 Draft

2019-11-29 D. Mira Document accepted following

review

V2.0 Final

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 3 of 31

List of abbreviations

CFD Computational Fluid Dynamics

CLI Command Line Interface

CPU Central Processing Unit

CoE Center of Excellence

CUDA Compute Unified Device Architecture

DMA Direct Memory Access

FPGA Field-Programmable Gate Array

GASPI Global Address Space Programming Interface

GPU Graphics Processing Unit

HPC High-Performance Computing

HLS High Level Synthesis

MPI Message Passing Interface

PETSc Portable, Extensible Toolkit for Scientific Computation

RCB Recursive Coordinate Bisection

SFC Space Filling Curve

Spliss Sparse Linear Systems Solver

TDP Termal Design Power

UDF User Defined Function

UPC Unified Parallel C

VHDL VHSIC Hardware Desciption Language

VHSIC Very High Speed Integrated Circuit

VPN Virtual Private Network

WP Work Package

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 4 of 31

Executive Summary

The progress on the development of Exascale enabling technologies on the EXCELLERAT

core codes is presented for the first year of the project. The developments have been guided

by the definition of an individual code development roadmap in collaboration with Work

Package 2 (WP2) and WP4, so the demonstration of Exascale simulations with the use cases

can be achieved. From this roadmap, several requirements were identified (see D2.1

“Reference Applications: Roadmap and Challenges” [1]) and a summary of the activities

conducted to address these requirements is presented here. Two fundamental activities are

associated to these developments, Task 3.1 focused on node-level performance and Task 3.2

on system-level performance engineering. Note that main changes in the evolution of HPC

systems are occurring at node level. This is a major reason to have a specific task focused on

this topic.

In this first year, the activities carried out by the partners on these tasks have been focused on

auditing the performance at node level (DLR, BSC, KTH, CERFACS), enabling the

utilization of accelerators through the directives based language OpenACC (BSC, KTH),

developing new data structures to better exploit new architectures (CERFACS, BSC) and

developing techniques for the introduction of FPGAs on the CoE’s codes (UEDIN).

The second major activity is focused on identifying and overcoming bottlenecks at system

level that will arise on the road to Exascale. In this first year, the activities carried out by the

partners have been focused on auditing the performance and system level and identify

bottlenecks (DLR, KTH, CERFACS), improving the strong scaling of the codes (CERFACS,

KTH) and designing and implementing new distributed memory load balancing strategies

(BSC). The activities on this WP also include the development of a benchmark suite for each

code to be able to test and monitor the evolution of the codes, and the development of an

efficient data transfer and dispatching strategy to operate the codes in an HPC cluster.

Meshing activities have recently started and a compilation of information from the partners

involved in these tasks (KTH, CERFACS and BSC) has been conducted.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 5 of 31

Table of Contents

1 Introduction .. 8
2 Task 3.1. Node-level performance optimization .. 9

2.1 Acceleration of Nek5000 kernels based on OpenACC ... 9
2.2 Introduction of dynamic data structures in AVBP .. 10
2.3 Unified CPU/GPU vectorization strategy developed in Alya 10

2.3.1 Optimization of PACK_SIZE for the CPU .. 11
2.3.2 Optimization of PACK_SIZE for the GPU .. 12

2.4 FPGA acceleration of the CoEs applications .. 12
2.4.1 Development of the kernel ... 13
2.4.2 Performance comparison .. 14

2.4.3 Software development tooling ... 15
2.4.4 Summary and next steps ... 16

3 Task 3.2. System-level performance optimization ... 17

3.1 Improving strong scalability of FEniCS .. 17
3.2 Improve strong scalability of AVBP ... 17
3.3 System level dynamic load balancing enabled in Alya ... 18

3.4 System level performance analysis in CODA ... 20
4 Task 3.3. Implementation of advanced meshing techniques .. 22
5 Task 3.4. Test lab for emerging technologies .. 23

6 Task 3.5. Validation and benchmarking suites .. 24
7 Task 3.6. Data dispatching through data transfer ... 27

8 Conclusion .. 30
9 References .. 31

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 6 of 31

Table of Figures

Figure 1: Performance results for Nekbone on a single GPU using 9th order polynomials 9
Figure 2: Optimized kernels in Nek5000 ... 10
Figure 3: Speed up for different pack sizes, for PACK_SIZE defined as a Fortran parameter or

a variable .. 11
Figure 4: Left: Speed up for different pack sizes for PACK SIZE for the GPU execution.

Right: speedup of the GPU execution vs the CPU execution .. 12
Figure 5: Speed up for different pack sizes, for PACK_SIZE defined as a Fortran parameter or

a variable .. 14
Figure 6: Runtime of FPGA code (8 kernels) vs 18 cores of Broadwell against grid size with a

standard test-case. For our FPGA approach we report three numbers: the total FPGA

runtime, the execution time of the kernel alone (FPGA kernel) and the FPGA DMA

overhead ... 15
Figure 7: Profiling connection to HLS kernel and timer .. 16

Figure 8: Matrix reassembly time for Laplace’s equation in 3D on a mesh with 317M

elements (left). Reassembly times for the momentum and continuity equations in an

implicit LES solver on a mesh with 60M elements (right) .. 17

Figure 9: Strong scaling for AVBP in the JeanZay system (C3U1: static mesh) 18
Figure 10: Normalized elapsed time per MPI rank. Assembly phase of the airplane simulation

(176M elements mesh) ... 19

Figure 11: Convergence of the balancing process (176M mesh). Evolution of the maximum,

minimum and average time for the assembly phase .. 20

Figure 12: Performance analysis results and speedup for a very small test case designed to test

strong scalability at low core counts .. 21
Figure 13: Conceptual model of the data transfer system .. 27

Figure 14: HPC Workflow ... 28
Figure 15: Project structure .. 29

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 7 of 31

Table of Tables

Table 1: Runtime of kernel based on algorithmic changes .. 13

Table 2: Comparison of the in-hose SFC partitioner with the Soltan library. The case used is a

mesh around an airplane of 250M elements. .. 19
Table 3: Benchmark suite Alya .. 24
Table 4: Benchmark suite AVBP ... 25
Table 5: Benchmark suite CODA .. 25

Table 6: Benchmark suite Nek5000 – (1) .. 26
Table 7: Benchmark suite Nek5000 – (2) .. 26

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 8 of 31

1 Introduction

The present document is a summary of all activities and achieved results within WP3 in its

work on Exa-enabling during the first year of the EXCELLERAT project. It provides

information on the optimizations of the reference applications’ performance at system and

node levels. In addition, the advances in meshing techniques, the implementation of the data

layer and the benchmarks developed in the project are presented. The report is divided into

different Sections that are referred to the different tasks of the EXCELLERAT WP3. This

deliverable is made from the different contributions of the partners, which have been

compiled and linked to the requirements of the use cases defined in WP2.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 9 of 31

2 Task 3.1. Node-level performance optimization
The main changes in the evolution of HPC systems are occurring at node level. Consequently,

the complexity associated with unlocking the intra-node performance of computing systems

has increased substantially. This task addresses all the aspect related with performance at

node level, including code porting and algorithms refactoring on various architectures. In this

task, the level of readiness of each core code is analysed and the required developments

supported. Here after we present the activities carried out in T3.1 for the first twelve months

of the EXCELLERAT project.

2.1 Acceleration of Nek5000 kernels based on OpenACC

During the first year, KTH has focused on improving Nek5000’s GPU performance, which

has mainly been implemented using OpenACC directives. As a starting point the work was

based on the proxy-app Nekbone [2], focusing on optimizing the small matrix-matrix

multiplication kernels (mxm) which constitutes most of the work in Nek5000. In Nekbone,

these kernels had already been implemented using both OpenACC and CUDA. Starting with

the OpenACC version, since the implementation is fairly old, the performance could be

improved up to 40% by reordering the loop directives.

The CUDA kernel in Nekbone was written in a general fashion without any optimizations for

a particular polynomial order. But to achieve good performance for the CUDA kernels the

mxm operations needs to fit into the GPU’s shared memory, which is not possible for

polynomial order ten and higher. However, production runs are seldom performed at these

high orders, therefore those could be limited to ninth order kernels and rewrite them to take

advantage of shared memory, making them up to 60% faster (Figure 1).

Figure 1: Performance results for Nekbone on a single GPU using 9th order polynomials

Based on the knowledge gain from tuning Nekbone, similar kernels were identified in

Nek5000 namely axhelm and multd. Both kernels are quite similar to the ones in Nekbone,

thus refactoring the OpenACC directives could be performed directly in Nek5000 reducing

the actual kernel time by 34% and 24% respectively. Given the good experience with CUDA

kernels in Nekbone the kernels axhelm and multd were also rewritten in Nek5000 using

CUDA, restricting to polynomials of ninth order. These kernels reduced the runtime even

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 10 of 31

further compared to the reordered OpenACC versions, with 18% faster multd and 31% faster

axhelm (Figure 2).

Figure 2: Optimized kernels in Nek5000

In the coming period the kernels of Nek5000 will continue being optimized, moving most of

them to CUDA. However, most of the focus will be on obtaining good system-level

performance across nodes.

2.2 Introduction of dynamic data structures in AVBP

A development required for the use case based on combustion instabilities and emission

prediction, was to introduce new dynamic data structures in AVBP. This new packaging

requires extensive validations but also performance evaluation and analysis. Within this task,

the new releases of AVBP have been tested and optimized on available architectures.

Furthermore, CERFACS was granted access to the new Tier 1 machine JEANZAY (2x20

Skylake) from GENCI-IDRIS [3] and an ARM prototype with ThunderX2 processors. The

performance of AVBP 7.5 released in September 2019 was analysed accounting for

requirements AVBP R1 (dynamic mesh structures) and R3 (automatic remeshing).

Porting to Intel processors, has identified a major bottleneck in the previous releases: the -

fPIC option used to generate user define functions (UDF) in the code via dynamic libraries

disables high level vectorization and reduces performance of the code by up to 30%. The

issue is being investigated with a bug report set to Intel. UDF are not required for the uses

cases and can be disabled for now.

2.3 Unified CPU/GPU vectorization strategy developed in Alya

The last level of parallelism within Alya consists of a SIMD vectorization on the CPU and

SIMT in the GPU. A data restructuring has been carried out in EXCELLERAT to optimize

the performance at this last level for both devices. In the GPU execution model, two

additional parameters are needed: number of threads and blocks. The workload is divided in

thousands of threads that are grouped into blocks. Each block containing the same amount of

threads. The threads within the blocks are essentially executed in SIMD mode, so at this level

the CPU and GPU optimal data structures follow the same pattern. The GPU manages the

number of blocks that can keep active depending on the memory requirements of the threads

(i.e. number of registers, shared memory and number of threads per block).

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 11 of 31

The work carried out at node level in Alya has been focused on generating a new data

structure to enhance the efficiency of the assembly on both the CPU and GPU devices.

Firstly, we carry out a data reordering to store contiguously in memory the elements of the

same kind (tetrahedron, hexahedron, prism, and pyramid), that follow the same integration

rule and that can be computed simultaneously without race conditions. To meet this last

condition, classical colouring strategies have been used. Then, we group such elements into

packs of size PACK_SIZE. Note that zeros are padded in the data structure when elements of

the same category are not enough to fill a pack. Finally, the assembly runs on each pack of

elements instead of on every single element. This approach has a two-fold benefit. On the one

hand, it improves data locality, because it stores elements in dense packs. On the other hand,

the code exposes the SIMD/SIMT potential and the compiler can leverage more instructions

for the vectorial unit. We use the common approach for CPUs and GPUs being the

PACK_SIZE then tuned for each specific device.

2.3.1 Optimization of PACK_SIZE for the CPU

The PACK_SIZE can have a significant impact on the CPU performance. Here we show this

impact for the particular case of an Airplane LES simulation for a mesh of 31.5M elements

[4]. We have performed the experiments on 10 nodes of the MareNostrum CTE POWER9

cluster, launching 40 MPI processes per node (i.e., one MPI process per CPU-core).

Figure 3 shows the speedup obtained when using different values for the pack size in the

CPU, considering both its definition as a compilation parameter or as a variable of the code.

The speedup is computed according to the execution time using a pack size of 1 as a

compilation parameter. The red line with square dots evaluates the improvement in

performance due to the locality of the data, and it will be related to the length of the cache line

for the last level cache. The optimum pack size, when used as a variable, is 16 in this

architecture. If we look at the pack size defined as a compilation parameter, we are evaluating

the combined benefit of the better data locality and the better use of the vector units. For this

reason, the performance of the pack size defined as a compilation parameter is always better

Figure 3: Speed up for different pack sizes, for PACK_SIZE defined as a Fortran

parameter or a variable

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 12 of 31

than the same size defined as a variable. Note as a summary that the achieved speedup reaches

3.5x.

2.3.2 Optimization of PACK_SIZE for the GPU

The same analysis is shown in Figure 4 for the GPU execution. In this case the optimal

PACK_SIZE is much larger than the one required for the CPU, something that is expected

since a GPU needs a critical occupancy to achieve good performance. Finally, in the right part

of Figure 4 we show the speedup of the GPU vs the CPU execution. In this case we are

comparing the two POWER9 CPUs composing each node (40 CPU-cores in total) versus the

performance using 4 GPUs. The Figure also shows different optimizations that we carried on

the OpenACC based implementation developed to use the accelerators; the final speedup

achieved is close to 4x.

Figure 4: Left: Speed up for different pack sizes for PACK SIZE for the GPU execution. Right: speedup

of the GPU execution vs the CPU execution

Further details of the developments and tests carried out in this task will be available in [4].

2.4 FPGA acceleration of the CoEs applications

In this period, UEDIN has been working on the FPGA acceleration of the CoEs applications.

Field Programmable Gate Arrays (FPGAs) are configurable chips that can be programmed to

execute specific functionality in hardware. This is potentially very beneficial for HPC codes

because, in contrast to running on a CPU, executing directly in hardware can provide

significantly increased performance at a fraction of the energy usage. Traditionally, FPGAs

were very difficult to program, requiring the mastery of hardware description languages.

However, in the past couple of years vendors have made very significant advances in the

software development eco-system and it is now commonplace to program FPGAs using C or

C++.

With the predicted slowdown in Moore’s law, any alternative option to accelerating the CoE’s

codes is worth exploring. FPGAs are interesting because, not only do they avoid the overhead

of a generalised microarchitecture, where the programmer can specialise the processing and

related items such as the cache directly for their application, but also FPGAs can be

configured to work at arbitrary precision. The latter is important because the HPC community

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 13 of 31

is currently very interested in reduced precision. Whilst the use of FPGAs in HPC is still

fairly early, there are a number of HPC machines (e.g. the Cray CS500 at Paderborn

University), which contain this technology, along with all the major cloud vendors.

As such, a key question for the EXCELLERAT CoE is, moving to Exascale, what role could

FPGAs play in exploiting our applications for next generation science on future

supercomputers? We are focussed very much at the node-level here, with one or more PCIe

FPGA cards plugged into a single node. There are three questions that we have been focusing

around in order to answer this overarching question:

1. Can FPGAs provide performance benefits for accelerating HPC codes?

2. What algorithm level modifications are required to fully take advantage of this

technology?

3. What is the state of current software development tooling for FPGAs, and how might

this be improved to suit the needs of HPC codes?

Up until this point we have been focussed on accelerating a single stencil-based code, with the

idea being that the lessons learnt will then easily apply to other HPC codes in the CoE. The

kernel we have focussed on contains 53 double precision operations per grid cell and accounts

for around 50% of the runtime of the entire code. From the programming perspective we are

using High Level Synthesis (HLS), where kernels written in C, C++ or System C, are

translated into the underlying hardware description level by the tooling. Driven in code by

pragma style hints, using a high-level language such as C substantially speeds up

development time in comparison to traditional approaches such as VHDL. This also enables

application developers to take advantage of the knowledge and experience of the FPGA

vendor at the hardware level, for instance in the concrete implementation of floating-point

operations. It should be noted that FPGAs come in all shapes and sizes. For this work we are

using an ADM-PCIe-8k5 card which combines 16GB on-card DRAM with an Ultrascale

Kintex FPGA. The big benefit of using a PCI-e based FPGA is, compared to embedded

FPGAs such as the Zynq family, these can be combined with any x86 CPU and typically

provide more resources.

2.4.1 Development of the kernel

A detailed description of the work done implementing the kernel in C using HLS is provided

by [5] and [6], which have resulted directly from this work. Table 1 provides a general

overview of the performance of our HLS kernel (running at 250 Mhz) at various stages of

optimisation, against the original code running on 1 CPU core (Sandybridge) for a standard

test-case with 67 million grid cells. The CPU code takes 676.4 ms runtime, and it can be seen

that the initial port to FPGAs, with the kernel code unchanged from the CPU is over 70 times

slower.

Description Runtime (ms)

Reference CPU code 676.4

Initial port 51498

Pipelining loops 14130

Use of BRAM for caching 1513.2

Reordering memory access 621.3

Concurrent load and store to DRAM 189.64

Match data width to DRAM controller 63.49

Table 1: Runtime of kernel based on algorithmic changes

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 14 of 31

Table 1 can be thought of as illustrating the performance impact in adopting different

strategies to optimise the code. These are critically important, because the final version of the

HLS kernel ends up running over 10 times faster than on the CPU and over 800 times faster

than the CPU code directly ported to the FPGA initially! To achieve this speed up the code

has changed very substantially, requiring a significant rethink of the underlying algorithm,

converting to from a von-neumann to dataflow style of computing.

The overarching steps we adopted in this optimisation can be explained in a fairly general

manner, and at this point represent a set of best practice rules that we believe can be applied to

numerous algorithms. This is important to highlight, as these rules have not been published or

formalised previously, and many come from in-depth discussions with FPGA vendors. Whilst

inevitably some specialisation is required on a kernel by kernel basis, building up as a

community an overarching understanding of the steps required to optimise codes for FPGAs

is of great benefit and furthermore mirrors efforts of the community a decade ago for GPUs. It

is the reason why we have focussed on one initial application so far, and it is our strong belief

that these lessons will now apply to many, if not all, of the CoE applications.

2.4.2 Performance comparison

Table 1 illustrates the performance of a single HLS kernel against a single CPU core.

However, to understand the performance properties of the kernel on FPGAs against CPUs, a

more in-depth study is required. CPUs contain multiple cores and an FPGA can contain

multiple HLS kernels, so a multi-core and multi-HLS kernel comparison is more interesting.

Furthermore, the measurements in Table 1 ignore the cost of data transfer to and from the

PCIe FPGA card, which could represent a significant fraction of the overall runtime.

Figure 5 illustrates a performance comparison using a standard test-case of the code with 67

million grid points. The performance of our FPGA approach is compared against a C version

of the same algorithm, threaded via OpenMP across the cores of the CPU (Sandybridge,

Ivybridge, and Broadwell). For all runs the host code was compiled with GCC version 4.8 at

optimisation level 3 and the results reported are averaged across fifty timesteps. For each

technology there are two runtime numbers reported in milliseconds. The first, optimal

performance, illustrates the best performance by threading over all the physical CPU cores (4

in the case of Sandybridge, 12 in the case of Ivybridge, 18 in the case of Broadwell) or the

advection kernels (8, as this is the maximum that can fit on the FPGA chip.) We also report a

four core number, which includes only running over four physical cores, or kernels in the case

of the FPGA designs, as this is the limit of the Sandybridge CPU and allows a more direct

comparison.

Figure 5: Speed up for different pack sizes, for PACK_SIZE defined as

a Fortran parameter or a variable

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 15 of 31

With the optimal performance experiment, our HLS kernels are outperforming 18 cores of

Broadwell (148 ms against 180 ms), and the other two CPU technologies. Eight HLS kernels

are outperforming eighteen cores, and whilst it might seem that if we could fit more kernels

onto the FPGA then performance would be even higher, it should be noted that the overhead

of DMA transfer accounts for 42% of FPGA runtime at this problem size.

Figure 6 illustrates how the time, in milliseconds, changes one scales the number of grid cells.

For our FPGA approach (8 kernels) we report three numbers, the total FPGA runtime, the

execution time of the kernel alone (FPGA kernel only runtime) and the Direct Memory

Access (DMA) transfer overhead time (FPGA DMA overhead). We compare against 18 cores

of Broadwell, and for smaller grid sizes of 1 and 4 million grid cells our approach is 2.59 and

1.52 times faster than the CPU respectively. The FPGA and CPU are comparable at 16

million grid points, and the FPGA again outperforms the Broadwell by 1.22 times at 67

million grid points. However, Broadwell out performs the FPGA approach by 1.23 times at

268 million grid points.

It should be noted that, at all grid sizes, the FPGA kernel execution time alone is significantly

smaller than the execution time of 18 Broadwell cores. However, as the problem size

increases, the waiting for data to be transferred from the host to the device (which is itself

optimised, see [6] for details) is a source of over 40% overhead at 268 million grid points,

whereas at a grid size of 1 million points it only accounts for 2% of the total runtime. Based

upon on-board sensors, the configured but idle total power draw of the ADM-PCIe-8k5 board

is 28.9 Watts and this increases to 35.7 Watts under full load with the largest problem size

when our advection kernels are running. The TDP of the Broadwell is 120 Watts, so is

drawing significantly more power to complete the computation.

2.4.3 Software development tooling

Whilst the tooling for programming FPGAs has improved considerably in the past few years,

it is still not yet fully mature when compared against the environment HPC developers

commonly enjoy. An example of this is the lack of profiling, where the software development

tooling estimated that early versions of our HLS kernel were only spending around 20% of

Figure 6: Runtime of FPGA code (8 kernels) vs 18 cores of Broadwell against grid

size with a standard test-case. For our FPGA approach we report three numbers:

the total FPGA runtime, the execution time of the kernel alone (FPGA kernel) and

the FPGA DMA overhead

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 16 of 31

runtime in computation, but without profiling this could not be validated during execution or

insight gathered around where the rest of the time was being spent. As such, we developed a

simple but effective technique which is illustrated in Figure 7. This connects our HLS kernel

to a specialised profiling block that we also developed, and this profiler connects to a timer.

Our HLS kernel communicates to the profiler to inform it when blocks of code are entered

and exited, with the profiler collecting this information and sending it back to the host on

termination. This approach was required due to limits in HLS which mean that collecting

accurate timing data and computation cannot be mixed together in a single block. From the

data gathered, we in-fact deduced that early versions of the HLS kernel were only computing

for around 5% of the time, and were able to pin-point exactly where in the code the overhead

lay.

Figure 7: Profiling connection to HLS kernel and timer

2.4.4 Summary and next steps

The focus of this ongoing work is to leverage the knowledge and technology developed so far

and apply this to a wider range of the EXCERLLERAT CoE applications. The optimisation

methodology developed is applicable to a wide range of codes, and as such we are also

planning on writing research papers about this, using the CoE codes as benchmarks and test-

cases. Additionally, we have only explored kernels which are double precision floating point,

and think it will be very interesting to consider alternative precisions and fixed point. This

will be trivial to accomplish and we believe will significantly aid in accelerating CoE codes.

There is interest in this work from Xilinx and Alpha Data, both international companies, and

already both hardware and software development licences have been donated from them.

Going forwards it is very likely that they will provide us with further FPGA hardware, for

instance next generation FPGAs that combine the chip with High Bandwidth Memory

(HBM).

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 17 of 31

3 Task 3.2. System-level performance optimization
This task is focused on identifying and overcoming bottlenecks at system level. Load

balancing and communication/synchronization reductions are key aspects to achieve parallel

performance. Advanced features of MPI such as non-blocking collectives, fault tolerance and

remote memory access will be considered throughout the project. The developments carried

out in this task include both implementation optimizations and algorithms refactoring. Here

after we present the activities carried out in T3.2 for the first twelve months of the

EXCELLERAT project.

3.1 Improving strong scalability of FEniCS

In this reporting period, KTH has mainly focused on improving the strong scalability of

matrix assembly in FEniCS. For time-dependent problems this has to be done in each time-

step, thus it can quickly become a major bottleneck in a simulation. A key issue during matrix

assembly is communication latency, in particular for low-order finite elements, at scale with

few elements per core.

As a first step, the hybrid MPI+PGAS parallelization of FEniCS has been further developed

and evaluated (Figure 8). In this branch of FEniCS, the linear algebra backend is changed

from the MPI based PETSc [7] to a KTH-developed backend written in Unified Parallel C

(UPC). This new backend stores the sparse matrix in the partitioned global address space,

accessible by all ranks. With this abstraction, each rank can use low latency one-sided

communication to fetch remote dependencies during matrix assembly. This greatly improves

strong scalability of the assembly process, in particular for the very latency sensitive

situations at scale with low-order elements.

3.2 Improve strong scalability of AVBP

Strong scaling of AVBP has been tested on the JeanZay system up to 12k cores with excellent

performance as demonstrated in Figure 9. Load balancing above 4k cores required the switch

from ParMetis [8] to Treepart partitioning, based on recursive coordinates bisection, to avoid

crashes in MPI collective calls. Treepart is a new CERFACS partitioning library to uses the

system hierarchical structure to reduce communications and map the mapping to the

node/socket/core distribution.

Figure 8: Matrix reassembly time for Laplaceôs equation in 3D on a mesh with 317M elements (left).

Reassembly times for the momentum and continuity equations in an implicit LES solver on a mesh with

60M elements (right)

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 18 of 31

The tests were performed using the Intel 2019.0.4 compiler and MPI suite and HDF5 1.8.21

using use case C3U1 [1] without mesh adaptation. Additionally, the code was ported on an

experimental cluster equipped with thunderx2 processors. Scaling has been tested up to 1024

MPI tasks so far with adequate results (80% strong scaling). Tests for larger systems are

expected in Q1 2020 (access to UEDIN and JSC systems have been requested). An early user

access to the IRENE Joliot Curie AMD extension TGCC-GENCI Tier 0 system has been

granted for Dec-April.

3.3 System level dynamic load balancing enabled in Alya

In this first year of the EXCELLERAT project, a dynamic load balancing strategy has been

implemented in Alya. This is a runtime mechanism that is executed during the simulation. In

particular, these developments accomplish the requirement Alya-R2 (“Dynamic load

balancing”) and is a basic building block for Alya-R3 (“Mesh adaptation”) that requires

dynamic load balancing to be efficient in parallel, see [1] for details about the requirements.

The dynamic load balancing strategy implemented in Alya is based on an efficient in-house

SFC-based mesh practitioner. The partition is repeated with some correction coefficients to

correct the measured imbalances. Therefore, it is mandatory that the partition process is fast

to minimize the overhead of the balancing process. Some optimizations have been

implemented on the partitioning algorithm, which were recently presented in the SC19

conference in Denver [9]. Below, in Table 2 we show the partition costs for a mesh of 250M

elements for Airplane simulations (C2U2). In particular, the performance of the in-house

partition is compared with the Zoltan library [10] from Sandia National Laboratories. We

observe that the speedup of our implementation reaches up to 10x.

Figure 9: Strong scaling for AVBP in the JeanZay system

(C3U1: static mesh)

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 19 of 31

Table 2: Comparison of the in-hose SFC partitioner with the Soltan library. The case used is a mesh

around an airplane of 250M elements.

The efficiency of the partitioning algorithm enables its utilization for dynamic load balancing.

We have carried out all the developments required to restart Alya online, this means basically

reallocation of the arrays as well as redistributing data among the MPI processes. An

illustration of this feature is shown in Figure 10 for an airplane simulation using 24 POWER9

AC922 CPUs, each one with 20 Cores. In the configuration employed, one MPI-process is

assigned to each pair of cores, where 2 OmpSs [11] threads are launched. We can observe the

elapsed time per node with the initial imbalanced distribution (red line) and after the

balancing process is carried out (blue line).

Partitions Nodes

used

LB

in-house

LB Zoltan Time (s)

in-house

Time (s)

Zoltan

Speedup

384 8 0.99 1.0 0.25 0.87 3.5x

768 16 0.99 1.0 0.15 0.54 3.6x

1536 32 0.99 1.0 0.10 0.48 4.8x

3072 64 0.99 1.0 0.07 0.50 7.1x

6144 128 0.99 1.0 0.08 0.79 9.9x

Figure 10: Normalized elapsed time per MPI rank. Assembly phase of the airplane

simulation (176M elements mesh)

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 20 of 31

Finally, in Figure 11, we show how the maximum and the minimum time tend to the average

time through the online balancing process. Further details of the developments and tests

carried out in this task will be available in [4].

3.4 System level performance analysis in CODA

In 2013, DLR started the implementation of the next generation CFD solver FLUCS. Since

2018 FLUCS is the basis of a strong partnership between Airbus, ONERA and DLR focusing

on the development of a common next generation CFD code for aircraft flow predictions. In

January 2019, the consortium agreed on the name CODA for the common CFD code.

CODA is still under active development, i.e. it currently includes a subset of the planned

functionality and its scalability is in the order of thousands of cores. Due to the ongoing

development and frequently changing functionalities of CODA, one of the main tasks of the

performance analysis and optimization process, is the continuous re-analysis of the code. For

instance, in the recent period the internal linear algebra solver was replaced by the newly

developed Sparse Linear Systems Solver (Spliss).

The work in CODA focused on five main activities. First, we performed an initial

performance measurement, analysis and evaluation of CODAs current state (FLUCS-R3).

This resulted in an internal performance report that includes a detailed analysis of CODA’s

performance (node-level and system-level), the identification of potential performance issues

and recommendations for code optimization (FLUCS-T1) [1]. After that, a second

performance analysis was performed on an improved version of the test case and the results

internally discussed. For both analyses we used a very small version of the Use Case C6U1 to

allow a strong scalability analysis at relatively small core counts. Figure 12 highlights some

analysis results and the speedup for the small test case.

Figure 11: Convergence of the balancing process (176M mesh). Evolution of

the maximum, minimum and average time for the assembly phase

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 21 of 31

Figure 12: Performance analysis results and speedup for a very small test case designed to test strong

scalability at low core counts

Second, we compiled a list of priorities for improving the performance of CODA, which are

internally documented (FLUCS-T2). We started with their realization and implementation

(FLUCS-T3).

Third, we started the integration of basic performance metrics in the user interface of CODA

and their inclusion in the continuous software integration and review process. This allows

setting up a common performance baseline and quickly identifying software changes that

introduce performance degradation.

Fourth, we performed a study to analyse two different methods for the partitioning of mesh

data to the processes: the fast-recursive coordinate bisection (RCB) method and the graph

partitioning method Zoltan [10]. We analysed the impact of both partitioners to identify the

causes for the different resulting runtime behaviour.

Fifth, we cooperate with two performance analysis tool providers to extend their tools’

functionality to support complex engineering codes like CODA. Since CODA is implemented

in Python and C++ with a multi-level parallelization via MPI or GASPI and OpenMP, it is a

challenging application for current performance analysis tools and currently no existing tool

allows an analysis of all CODA features and parallel programming models.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 22 of 31

4 Task 3.3. Implementation of advanced meshing
techniques

This section describes the activities related to the meshing techniques that have been

developed during the first year of the project. There are two partners (BSC and CERFACS)

involved in the development of the adaptive mesh refinement (AMR) with two codes, Alya

and AVBP. The third partner involved in this task is KTH, as Nek5000 has already this

capability and the effort is only directed to optimizing this tool for certain conditions, so this

effort is not reported here, but on WP2 in particular for the deliverable D2.2.

Despite this task has not started for Alya and only partially started for AVBP, an overview of

activities planned for the two codes is now described. In the case of Alya, the mesh adaptation

corresponds to the requirement Alya-R3 in Year 2 that will focus on the implementation of

adaptivity to the current non-adaptive meshes (parallel dynamic mesh adaptivity, accurate

mesh adaptivity according to physics). This activity required the achievements of Alya-R1

(load balance strategy) and Alya-T2 (parallel pre-processing) before starting. As already

described in the previous sections, these capabilities are available in the code and the mesh

adaptivity work will start in M13. For the case of AVBP, the effort on mesh adaptivity has

recently started. The work is based on the AVBP-R1: dynamic mesh structure at runtime,

AVBP-R2: accurate interpolation methods, AVBP-R4: Incorporate automatic mesh

refinement and AVBP-R5: remeshing. The activities for AVBP-R4 and AVBP-R5 have

recently started in M11.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 23 of 31

5 Task 3.4. Test lab for emerging technologies
The activities on this task were focused on testing the use cases or kernels representing the

use cases on emerging technologies. During the first year of the project, PRACE resources

were allocated for the partners involved in this activity, and despite most of the activities are

going to start in year 2, some progress was accomplished for testing in ARM-based systems.

The use of ARM in HPC is of great interest, as it promises to be an important future HPC

technology, but there are key questions about how best to leverage this for HPC. For instance,

how do our different applications perform and scale on ARM based systems, what

modifications are required to these codes to fully take advantage of ARM systems, and how

do these codes running on ARM compare against x86 based HPC systems.

Fundamental to all of this is the correct choice of underlying communications library, and we

have investigated the relative performance differences of these and presented this during an

invited talk at the MVAPICH User Group in Ohio. We are using Fulhame for this work,

providing 64 nodes each containing two 32-core Marvel ThunderX2 ARM CPUs (4096 cores

total), comparing and contrasting the different MPI implementations on AR. These

implementations were MVAPICH, OpenMPI, and HPE’s MPT, and driving this exploration

was the investigation of performance and scaling for a number of popular HPC codes,

including CoE applications. For context, we also compared against a couple of x86-based

systems, MVAPICH and MPT running on Cirrus, which is an x86 Broadwell system with

InfiniBand, and ARCHER, a Cray XC30 system with Aries interconnect and Cray’s tuned

implementation of MPICH.

There were some really interesting patterns highlighted and, generally speaking, MVAPICH

was very competitive against the other implementations, for instance on the x86 Cirrus system

it outperformed MPT, in some cases very significantly. On Fulhame, the performance patterns

were more nuanced, where in some cases MVAPICH demonstrated some really important

performance benefits, for instance with 2D pencil decomposed FFT codes as their AlltoAll

collective significantly out performs what OpenMPI or MPT provide. In other situations,

OpenMPI or MPT performed slightly better, but it is very important to note that OpenMPI

had to be configured to select the correct communication protocol and instead MVAPICH

gave good performance out of the box. The quantitative values are still being worked out.

The MVAPICH team have not yet fully tuned their technology for ARM, and this is very

important because MVAPICH contains many advanced algorithms, which suit different

situations and as ARM systems are so new, then it is likely that rules selecting which

algorithm to use when, need to be tweaked. A video about the aforementioned invited talk at

the MVAPICH User Group in Ohio was published by insideHPC [15].

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 24 of 31

6 Task 3.5. Validation and benchmarking suites
In order to quantify and evaluate the progress and evolution of the codes after the technical

developments made in WP3, some benchmarks were defined for each code. This will permit

to monitor the progress of the codes throughout the life of the project and evaluate the

performance of the codes respect to the starting day. These benchmark cases or micro-

benchmarks are not expected to be as the use cases of WP2, but they are defined in order to

expose the bottlenecks of the codes when running the reference applications in WP2. The

different cases and activities involved in the execution of these benchmarks are provided

below in Tables 3-7.

Partner BSC

Code Alya

Test case Technically premixed swirling combustor

Linked use case C2U1 - Emission predictions in engines

Requirements (WP2) Alya-R1: Fully parallel workflow

Objective Analysis and optimization of the pre-processing stage

Short Description 6.1.1.1 The hybrid mesh is based on a combination of

tetrahedrons, prisms and pyramids with different levels of

refinement within the domain. Two meshes are

considered of with 110 million (M1) and 856 million

(M2) elements respectively. The analysis includes the

operations going from the mesh reading to the start of the

time marching.

Activities Description Start date End date

A1 6.1.1.2 Performance analysis

and identification of

bottlenecks

M1 M4

A2 Low level optimizations M5 M8

A3 6.1.1.3 Algorithms refactoring

to overcome

parallelization

bottlenecks

M9 M12

Table 3: Benchmark suite Alya

Partner CERFACS

Code AVBP

Test case Explosion simulation

Linked use case C3U1 – Explosion simulation

Requirements (WP2) AVBP-R1: Dynamic mesh structure at runtime

AVBP-R4: Efficient remeshing

Objective 6.1.1.4 Profiling and measurement of simulation time

requirements pre- mesh adaptation.

Short Description 6.1.1.5 Static meshes need to be accurate for all stages of a

simulation. In this case the mesh is uniformly refined to

be able to discretize the flame everywhere even though

the scales to resolve are much large for 90% of the

domain at a given time step. The analysis will be used as

a benchmark to assess the gains that will be gained by

having a dynamic mesh refinement method.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 25 of 31

Activities Description Start date End date

A1 6.1.1.6 Introduce dynamic mesh structure in

the code

01/01/2019 30/09/2019

A2 6.1.1.7 Validation of the code using in house

non-regression tests

15/06/2019 15/09/2019

A3 6.1.1.8 Perform a Large Eddy Simulation

with the new code and measure each

computing phase time per time-step

and time to solution

15/09/2019 31/12/2019

Table 4: Benchmark suite AVBP

Partner DLR

Code FLUCS/CODA

Test case 6.1.1.9 CFD-solver for aircraft aerodynamics

Linked use case C6U1

Requirements (WP2) None

Objective 6.1.1.10 Analysis and optimization of FLUCS/CODA

Short Description 6.1.1.11 The use case will demonstrate the CFD solver

performance and scalability based on an aircraft

geometry.

Activities Description Start date End date

A1 Performance analysis M1 M6

A2 6.1.1.12 Concepts and implementation for

potential performance enhancements

M7 M12

Table 5: Benchmark suite CODA

Partner KTH

Code Nek5000

Test case 6.1.1.13 AMR simulation of flow over NACA0012 airfoil with 3D

wing tip

Linked use case C1U1 – Wing with 3D wing tip

Requirements (WP2) Nek5000-R3 : Efficient strategies for hex-based meshing of

complex geometries

Nek5000-R4 : Proper scheme for element’s geometry description

and projection of grid points on defined surface

Objective 6.1.1.14 Pre-processing stage: building hex-based coarse mesh for

moderately complex geometries

6.1.1.15 Code initialisation: testing initial AMR pipeline focusing

on geometrical mesh consistency

Short Description 6.1.1.16 Performing AMR simulation starts with creating very

coarse mesh, that would be later refined in the region

with significant computational error. For hex-based

meshes with complex geometries this is a challenging

task. During a run the mesh is dynamically modified by

adding/removing computational subdomains (elements)

keeping external domain surfaces unchanged. This

requires additional geometry correction step based on 3D

projection.

Activities Description Start date End date

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 26 of 31

A1 6.1.1.17 3D projection routines for

NACA0012 profile with rounded

wing tip

Mar 2019 Apr 2019

A2 6.1.1.18 Coarse mesh of NACA0012 profile

with rounded wing tip

Apr 2019 May 2019

A3 6.1.1.19 Initial refinement on wing surface

(without use of error indicator)

Table 6: Benchmark suite Nek5000 ï (1)

Partner KTH

Code Nek5000

Test case 6.1.1.20 AMR simulation of flow over 3D periodic hill

Linked use case C1U1 – Wing with 3D wing tip

Requirements (WP2) Nek5000-R5 : High quality mesh partitioner based on graph

bisection

Nek5000-R6 : Efficient pressure preconditioner for non-

conforming, deformed elements

Objective 6.1.1.21 Code initialisation: testing mesh partitioning using graph

bisection; testing initialisation of the coarse-grid solver

for deformed elements

6.1.1.22 Code executions: monitoring pressure iteration count for

different element aspect ratio.

Short Description 6.1.1.23 A key aspect of the performance of the incompressible

flow solver is efficient solution of pressure problem, as

divergence-free constraint is a man source of stiffness in

the set of equations. In this test we focus on the main

performance issues e.g. work balance and efficient

pressure preconditioner.

Activities Description Start date End date

A1 6.1.1.24 Merging/adapting existing AMR

branch with official Nek5000

repository

May 2019

A2 6.1.1.25 Testing different partitioning tools

(ParMETIS, PARRSB)

A3 6.1.1.26 Improved pressure preconditioners

for non-conformal meshes using

AMG

A4 6.1.1.27 Improved pressure preconditioners

for non-conformal meshes with

deformed elements

Table 7: Benchmark suite Nek5000 ï (2)

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 27 of 31

7 Task 3.6. Data dispatching through data transfer
The general goal is to combine data transfer and data management. The vision is to provide a

new software solution, on which the data, that needs to be calculated, is uploaded, sent to the

cluster, compiled and executed. Further services could be:

¶ Possibility to interact with cluster through a Command Line Interface (CLI).

¶ Visualization of result data.

¶ Data transmission in encrypted form.

¶ Fast data transfer due to a data reduction technique.

¶ Visual feedback on cluster allocation in form of a dashboard.

The platform will be connected to all HPC systems in the project. At any time, there should

be traceability of what happens to the data or where the data is located.

In the first few months, the goal is to develop a prototypical application in which a first real

HPC use case can be mapped. The first use case will be the use case C2U1 from BSC in

collaboration with RWTH Aachen, which will be implemented into the system. That means,

the source code of the solver will be compiled and integrated into the software. When all

configuration files are available, the actual solver execution will take place and the result data

is going to be transferred back. For the future, the following feature could be implemented:

¶ Compression of the returned data

¶ Data encryption of the transferred content

¶ Addition of more solvers

¶ Possibility to connect all HPCs

Figure 13: Conceptual model of the data transfer system

Figure 13 gives an initial overview of how the new system could look like. The complete

service should be distributed over three layers. The first layer are the users and the available

interfaces they can use. For example, there should be a web interface and a small client. The

web interface could be used to handle smaller amounts of data and the client should perform

more complex actions like delta building or data compression. With both interfaces it should

be possible to upload data, configure jobs and download or view the result data.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 28 of 31

In the second layer, a central distribution mechanism would be installed. This would be a data

dispatcher which would also be responsible for data management. This layer can either run in

one of the HPCs or in the cloud, where a very high data throughput is possible - for example

Google or Amazon cloud services. Of course, the data would not be stored there and only

passed to the appropriate HPC. The transition between the second and the third layer could be

controlled either directly via the Internet or, for example, with a Site-2-Site VPN.

The lowest layer is formed by the individual HPCs on which the code is executed and each of

these HPCs needs to run a small application, in order to communicate with the second layer.

Furthermore, the creation of data deltas could contribute to a good data management system.

Each file will have a unique content identifier which is built for example by 1 MB blocks and

each of these files has its one hash. In the end there is one big tree with all the hashes. That

means if a file changes, only the changed blocks and not the whole file has to be transferred.

Figure 14 represents a first draft of a general HPC workflow, which should be transformed

onto the new software.

Figure 14: HPC Workflow

The following description will give a technical overview of how the all-in-one platform is

built and which technology is used.

The platform is based on a container-based infrastructure and microservices. Microservices

are small, autonomous services that have a single job and work together. In order to run the

networked services in a secure and connected way, Istio [12] is used as service mesh.

The container architecture in this case is Docker, which is managed by Kubernetes.

Kubernetes is an open-source system for automating deployment, scaling and management of

containerized applications. To operate and scale the Kubernetes cluster on an infrastructural

level, the cloud service provider from Google Cloud is used at the moment. Therefore, the

package manager Helm is used to provide applications into Kubernetes.

The programming languages used in the repositories are mainly Java and Typescript. The

following markup, style and script languages are also partly used: HTML, CSS and

JavaScript.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 29 of 31

The whole source code of the platform is managed by a self-hosted GitLab. GitLab offers a

location for online code storage and collaborative development of software projects. Figure 15

gives an overview of the project structure.

Figure 15: Project structure

Each project folder is responsible for single functionality in the platform. For example, the

"web-ui" provides the web server Nginx, that stores web site files and broadcasts them over

the internet. The "gateway" and "projects-query" folders contain various applications like

MongoDB [13] or Micronaut [14].

Micronaut is used as JVM-based, full-stack framework for building modular microservice

applications. Gradle is used as build tool behind that assembles the individual components

into finished JAR files, which are then transformed into docker images using the Java Jib

plugin. In order for all components to be built successfully, a separate bash script is used to

build finished docker images from the gateway, project, and Web UI components.

For storing all the data, the two databases MongoDB and Neo4j are implemented. The

document database MongoDB stores data in JSON-like documents, meaning fields can vary

from document to document and data structure can be changed over time. On the other side,

Neo4j is an open source graph database management system. A graph is a pictorial

representation of a set of objects where some pairs of objects are connected by links. It is

composed of two elements - nodes and relationships.

In order to publish and subscribe to streams of records or to store and process streams and

events, the platform Apache Kafka is used. It also provides multiple interfaces for writing

data to Kafka clusters, reading data, importing and exporting data to and from third-party

systems and it acts as a messaging system between the sender and the receiver. The Kafka

client sends any event into the project queue, which can then be consumed by anyone.

To enable messaging, in order to connect and scale the all-in-one platform, the message

broker RabbitMQ is used. It is a message-queueing software to which all HPCs of the all-in-

one platform are connected to.

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 30 of 31

8 Conclusion
As a conclusion, the progress on the development of Exascale enabling technologies on the

EXCELLERAT core codes for the first year of the project has been presented. Most of the

work has been dedicated to node-level performance and system-level performance

engineering. The activities carried out by the partners on these tasks have been focused on

auditing the performance at node and system level, enabling the utilization of accelerators,

developing new data structures and developing techniques for the introduction of FPGAs on

the CoE’s codes. Additional focus has been given to improving the strong scaling of the codes

and designing and implementing new distributed memory load balancing strategies. A

benchmark suite for each to test and monitor the evolution of the codes has been put in place,

and the development of an efficient data transfer and dispatching strategy to operate the codes

in HPC cluster has been accomplished during this first year. Meshing activities have recently

started and reports and progress will be presented on the progress report of year 2 (D3.2).

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D3.1 Page 31 of 31

9 References
[1] EXCELLERAT project, D2.1 “Reference Applications: Roadmap and Challenges”

[2] https://github.com/Nek5000/Nekbone

[3] http://www.idris.fr/annonces/annonce-jean-zay-eng.html

[4] R. Borrell, D. Dosimont et al. Airplane Simulation using Heterogeneous CPU/GPU co-

Execution targeting the POWER9 Architecture. Future Generation of Computer Systems,

under review.

[5] Brown, N 2019, Exploring the acceleration of the Met Office NERC Cloud model using

FPGAs. in ISC High Performance 2019 International Workshops. ISC19 IXPUG Workshop:

Using FPGAs to Accelerate HPC & Data Analytics on Intel-Based Systems, Frankfurt,

Germany, 20/06/19.

[6] Brown, N, Doleman D 2019, It’s all about data movement: Optimising FPGA data access

to boost performance. To appear in Fifth International Workshop on Heterogeneous High-

performance Reconfigurable Computing (H2RC'19), Denver, USA, 17/11/19

[7] Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil M and Ghosh, Debojyoti

and Smith, Barry F and Zhang, Hong. PETSc/TS: A Modern Scalable ODE/DAE Solver

Library. arXiv preprint arXiv:1806.01437,2018.

[8] A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering.

George Karypis and Vipin Kumar. 10th Intl. Parallel Processing Symposium, pp. 314 - 319,

1996.

[9] R. Borrell, G. Oyarzún, D. Dosimont and G. Houzeaux, Parallel SFC-based mesh

partitioning and load balancing. Proceedings of ScalA2019: 10th Workshop on Latest

Advances in Scalable Algorithms for Large-Scale Systems, SC19 Denver.

[10] E. G. Boman and U. V. Catalyurek and C. Chevalier and K. D. Devin. The Zoltan and

Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering,

and Coloring, Scientific Programming, (20): 2012.

[11] https://pm.bsc.es/ompss

[12] https://istio.io

[13] https://www.mongodb.com

[14] https://micronaut.io

[15] https://insidehpc.com/2019/08/a-performance-comparison-of-different-mpi-

implementations-on-an-arm-hpc-system/

https://github.com/Nek5000/Nekbone
http://www.idris.fr/annonces/annonce-jean-zay-eng.html
https://pm.bsc.es/ompss
https://istio.io/
https://www.mongodb.com/
https://micronaut.io/
https://insidehpc.com/2019/08/a-performance-comparison-of-different-mpi-implementations-on-an-arm-hpc-system/
https://insidehpc.com/2019/08/a-performance-comparison-of-different-mpi-implementations-on-an-arm-hpc-system/

