H2020-INFRAEDI-2018-2020

The European Centre of Excellence for Engineering Applications Project Number: 823691

D7.3

Dissemination, Communication, Collaboration, Community Building and Standardisation Report

The EXCELLERAT project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823691

Workpackage:	WP7	Awareness,	Impac	t Creation an	ıd
		Outreach			
Author(s):	Johanna Lu	cha		USTUTT	
	Natalie Lewandowski		USTUTT		
	Nikolai Wo	rms		USTUTT	
	Maike Gilliot TER		TERATEC		
	Matthias Meinke		RWTH		
	Antoine Da	Antoine Dauptain CERFACS			
Approved by	Executive Centre Management 2			29/11/2019	
Reviewer	Samir Ben Chaabane			TERATEC	
Reviewer	Christian Gscheidle FRAUNE			FRAUNHOFER	
Dissemination Level	Public				

Date	Author	Comments	Version	Status
2019-11-18	J. Lucha	Initial draft	V0.1	Draft
2019-11-21	ALL	Implementation of content from partners	V0.2	Draft
2019-11-22	J. Lucha	Document submitted to review	V1.0	Draft
2019-11-28	J. Lucha	Updates after internal review	V1.7	Draft
2019-11-29	J. Lucha	Document accepted following review	V2.0	Final

List of abbreviations

BoF	Birds of a Feather
CFD	Centre Coordination Committee
CoE	Centre of Excellence
EU	European Union
НРС	High Performance Computing
IG	Interest Groups
ISV	Independent Software Vendor
KPIs	Key Performance Indicators

Executive Summary

This meta-report will report yearly on all activities of WP7 with a subsection each for performed actions and plans in the areas of dissemination, communication, collaboration, community building and standardization. As the work package 7 tasks, concerning Community Building and Standardization, have been started and established since D7.2 "Initial Dissemination and Collaboration Plan" [1], they will be described in more detail here. There will be an overview of the status of the KPIs and a more detailed description of WP7's tasks. Community Building and the Standardisation are developing and the results so far, are presented in this document.

Table of Contents

1	Intro	duction	8		
2	Dissemination and Communication				
	2.1	Goals and tools of dissemination	9		
	2.2	Progress with dissemination KPIs	9		
	2.2.	1 Website	10		
	2.2.	2 Newsletter, Publications and Whitepapers	10		
	2.2.	3 Video-Blogging/Podcasting	10		
	2.2.	4 Social Media	10		
	2.2.	5 Media Relations & Events	11		
3	Colla	aboration Plan	13		
	3.1	Collaboration Introduction	13		
	3.2	Detailed Collaboration of the EXCELLERAT Partner	14		
4	4 Community Building				
	4.1	Approach	20		
	4.2 Implementation				
	4.3 Work Involvement of the Interest Groups				
5	Stan	dardisation	23		
	5.1 Identification				
	5.2 Elaboration				
	5.3	Diffusion	26		
6	6 Conclusion				
7	7 References				
A	Annex: Input from the EXCELLERAT Partners on Community				

Table of Figures

Figure 1: Breakdown of the Industrialization process of AVBP	
Figure 2: Comic Strip #1 from the future HPC Blog	
Figure 3: Comic Strip #2 from the future HPC Blog	
Figure 4: Comic strip #3 from the future HPC blog	

Table of Tables

Table 1: KPIs Overview	10
Table 2: Relevant magazines for press outreach	11
Table 3: List of pickups in the media	12
Table 4: Overview of the EXCELLERAT collaboration projects	13
Table 5: Detailed Collaboration USTUTT	14
Table 6: Detailed Collaboration UEDIN	15
Table 7: Detailed Collaboration CINECA	16
Table 8: Detailed Collaboration SICOS BW	16
Table 9: Detailed Collaboration KTH	16
Table 10: Detailed Collaboration ARCTUR	17
Table 11: Detailed Collaboration CERFACS	17
Table 12: Detailed Collaboration BSC	
Table 13: Detailed Collaboration FRAUNHOFER	
Table 14: Detailed Collaboration RWTH	19
Table 15: Detailed Collaboration TERATEC	19
Table 16: Implementation	
Table 17: IG Webinar Agenda	21
Table 18: Deliverables	
Table 19: Milestones	
Table 20: National/Regional communities and events	30

1 Introduction

The CoE for Engineering Applications EXCELLERAT aims to boost High Performance Computing (HPC) for engineering to Exascale and thus enable the engineering industry to use highly scalable codes leading to increased competitiveness. In order to help establish EXCELLERAT as a principal hub for industrial and academic players in the field of engineering with use of HPC, awareness about the services and expertise of EXCELLERAT has to be created among its stakeholders, which makes it necessary to approach communication and collaboration strategically.

In the first section of this document, the dissemination and communication strategy is addressing the questions of how information is exchanged within the project, what communication goals EXCELLERAT aims to reach, who the target group is and what message the project wants to deliver to each of them. In addition, communication and dissemination performance evaluation is outlined with the help of KPIs. This document explains the specific communication measures and tools the project uses in order to meet the strategy outlined in the prior section. The purpose of the EXCELLERAT portal specifically is only outlined very briefly, as this web-based tool will not be developed before the end of 2019.

Additionally, this deliverable provides a comprehensive summary of the activities, which can be performed in cooperation with partners beyond the EXCELLERAT CoE.

Efficient collaboration on various levels are identified, e.g., with other European CoEs or projects, with industry companies and with national projects/partners working on HPC related fields.

Finally, this document introduces community building as a tool to more efficiently support the exploitation of the EXCELLERAT services.

This document is a living document and will be updated and released as versions in M24 and M36 of the project.

2 Dissemination and Communication

The Centre will act as a single access point to technology and expertise. Academia and industry can avoid overlapping investments by making use of the knowledge pool of EXCELLERAT. This will give all parties the chance to free up their own resources to drive niche innovations specific to a particular code.

2.1 Goals and tools of dissemination

In EXCELLERAT, both dissemination and communication are managed as a combined strategy. The two are similar timing wise and one could monitor for example social media for success (with KPIs). The identified target groups also define the level of interaction that is necessary through time from awareness over understanding up to action/collaboration. Dissemination is of importance for the academic/scientific communities as well as for the industrial players. The goal is that dissemination activities will transform into collaboration and finally exploitation activities towards the end of the project.

2.2 Progress with dissemination KPIs

Table 1 below shows the current values of the communication KPIs until M12 of the project. The goal is, amongst other things, to increase the traffic on our website in way, that it is not about numbers, but that the visitors get aware of the added value of EXCELLERAT and thus enter in discussions with the consortium. The performance concerning the number released for Scientific Papers and Whitepapers as well as in the "Events" section is in an early status of the project. The consortium has decided to focus within the first year on awareness creation on the existence of the project and will now enter a phase where more and matured results lead automatically to a higher number of publications with concrete contents. The KPIs (Table 1: KPIs Overview) will further improve during M13-M36 of the project. Still despite setting the targets high, some of them are already achieved.

Tool	KPI	Status M12	Target M36
Publication	Released Scientific Papers	Released Scientific Papers6	
	Press Releases	2	4
	Released Whitepapers	0	5
Events	Project presentations	12	25
	conferences/events		
	Significant presence at events	2	15
	(hosted, sponsorship and		
	booths)		
	No. of Workshops/interest	1	4 workshops
	group meetings no. of		interest
	workshop participants		groups
			meetings
	No. of conferences No. of	1	2 Total 150
	attendees		
Social Media	No. of twitter postings,	127 tweets	Regular
	Followers, Engagement and	148 followers	postings, 200
	Impressions	Ø522	Follower &
		Impressions/tweet	500
			impressions
	No. of LinkedIn postings,	86 followers,	75 Followers,
	followers, engagement and	LinkedIn Post	300
	impressions	(7.11.19) – 891	impressions

Public
Copyright © 2019 Members of the EXCELLERAT Consortium

		organic impressions	
Reference in external	Press clippings	8	20
media channels (on- &			
offline)			
EXCELLERAT	Number of visits	Overall 7.544	7000
Website		(11/19)	
EXCELLERAT Portal	Number of subscribers	0	50
Newsletter	Number of subscribers	0	150

Table 1: KPIs Overview

2.2.1 Website

The EXCELLERAT website architecture and analytics have been addressed in great detail in deliverable D7.1 "Website, Corporate Design and Templates" [2]. For now, the most important statistics are the following:

- Site visits: 40/day, overall 1.190 in 30 days.
- Referring Domains: LinkedIn, Google, ec.europa.eu, hlrs.de
- Top languages: English, German.
- Search terms: codes, excellerat, hlrs, training.

2.2.2 Newsletter, Publications and Whitepapers

There has been no Newsletter set up so far, since the technical results will become available during the second year of the action. The news is currently shared via social media and the EXCELLERAT Homepage.

2.2.3 Video-Blogging/Podcasting

As EXCELLERAT still follows a multi-media approach to communication, some of the blog articles and themes can be enhanced by videos or podcasts. Used formats and formats envisioned for the future:

- Recording of presentations (webinars).
- Interviews/Discussions/Workshops.
- Explanatory videos.

2.2.4 Social Media

EXCELLERAT is using social media for promoting content and connecting with the community. Within EXCELLERAT, social media is used to:

- increase traffic to the website over 7000 views in the first year
- create a community interested in engineering HPC
- inform about upcoming events, news and results regarding the project
- support the members, create another platform to interact & discuss topics directly

On Twitter and LinkedIn, EXCELLERAT will tag the relevant partners' handles to posts in order to encourage engagement and to connect every partner with the community. Sharing news and the participation at events are highly important in order to make F2F meetings possible, too. Being close to the community and interact via social media, the website and personal

contacts are key factors for the success of the dissemination of EXCELLERAT's results and achievements.

2.2.5 Media Relations & Events

It is one major goal to support the project's success with measures of both public relations and event presentations. EXCELLERAT will not only provide the HPC trade press with valuable content. A list of key media outlets has been identified in Table 2 and Table 3.

Magazine	Area	Language
HPCwire	HPC news	English
Primeurmagazine	Mainly HPC in Europe	English
The New Platform	HPC news	English
InsideHPC	HPC news	English
Scientific Computing World	HPC news	English
Golem	Technology news	German
Heise	Technology news	German
Eureka!	Engineering and design	English
Horizon Magazine	European funded research	English
Engineering	Technology, manufacturing,	English
	management	
CFD online	Computational Fluid	English
	Dynamics (CFD)	
	applications	
INSiDE	HPC in Germany	English
Science Node	Applied HPC	English
Research & Development	Applied Science	English
Technology Review	Digital innovation	German
VDI-Nachrichten	Engineering news	German
Bild der Wissenschaft	Popular science news	German
Digital Engineering Magazin	Digital engineering	German
	applications	
Automotive IT	IT in automotive industry	German
Data Center-Insider	Infrastructure/Hardware	German
	related news	
Industrie 4.0 Magazin	Technology and work life	German

Table 2: Relevant magazines for press outreach

The success of the EXCELLERAT media relations will be measured in pickups by the press ("clippings"). The list below with all clippings generated so far will be updated regularly. The participation at this year's SC in Denver was a success and was the perfect occasion to network and promote EXCELLERAT.

Source	Release	Channel	Link
	Date		
Produktdaten	Feb 18	Online	http://prostep.epaper.pro/journal-2018-02/de/#36
journal			
Primeurmaga	15 Oct	Online/	http://primeurmagazine.com/weekly/AE-PR-11-18-
zine	2018	Video	<u>85.html</u>

Public Copyright © 2019 Members of the EXCELLERAT Consortium

CCCmarrie	Ostohan	Online	https://www.couco
GCSHEWS		Omme	$\frac{\text{Imps://www.gauss-}}{(111111100000000000000000000000000000$
	2018		centre.eu/fileadmin/user_upload/PR_News/2018/Pub
			lications/GCSnews20/GCSnews_20_2018_final_sm.
			pdf#page=2
HPC Wire	12 Dec	Online	https://www.hpcwire.com/off-the-
	2018		wire/EXCELLERAT-to-bring-hpc-applications-to-
			engineering-industry/
INSiDE	Dec	Online /	https://www.hlrs.de/fileadmin/user_upload/InSiDE_1
	2018	Print	6-2 ES web.pdf#page=7
	2010		
IDW	Dec 3.	Online	https://nachrichten.idw-online.de/2018/12/03/expert-
	2018	0	nanel-on-the-future-of-hpc-in-engineering/
	2010		panel on the father of tipe in engineering/
Innovations	Dec 3.	Online	https://www.innovations-
Report	2018	0	report de/html/berichte/veranstaltungen/live-chat-
nopon	2010		zur-zukunft-von-supercomputing-im-
			engineering html
Innovations	January	Online	https://www.innovations-
Report	30		report com/html/reports/information-
nopon	2019		technology/new-analysis-methods-facilitate-the-
	2017		evaluation_of_complex_engineering_data html
			<u>evaluation-or-complex-engineering-data.num</u>
InsideHPC	March	Online	https://insidehpc.com/2019/03/european-
	21	0	commission-funds-10-centers-of-excellence-for-hpc/
	2019		
	2017		

Table 3: 1	List of	pickups	in	the	media
------------	---------	---------	----	-----	-------

3 Collaboration Plan

3.1 Collaboration Introduction

One of the main requirements for an intensive and customer-oriented development of HPC services for Engineering is a well-planned and continuously maintained collaboration network. To efficiently use EU resources, EXCELLERAT closely cooperates with other European research activities and initiatives to identify common issues in the field of HPC and to prevent those projects from investing into redundant efforts. As part of the FocusCoE¹ platform, EXCELLERAT already intensively collaborates with FocusCoE, EoCoE², POP CoE³, Max CoE⁴, ChEESE CoE⁵, HIDALGO CoE⁶ and CompBioMed CoE⁷ to synergistically define strategies for extreme scale application in the EU HPC Ecosystem.

Besides the collaboration within the FocusCoE project, EXCELLERAT features a large number of existing and newly acquired collaborations with, e.g., European and national projects, companies and dedicated research groups that have been contacted during the first year of EXCELLERAT and are summarized in Table 4. To further extend the collaboration network, further potential partners will be identified and the EXCELLERAT partners are encouraged to establish new cooperation activities. To attract potential industrial customers and collaboration partners, information about the EXCELLERAT services has been disseminated in close collaboration with Task 7.1 (Dissemination and Communication) for example at the Forum Teratec 2019 and by interest groups webinars (see Section 4). The early dissemination of the EXCELLERAT services and the cooperation with industrial end users ensures that the specific industry requirements in HPC applications are taken into account in the early development phase within EXCELLERAT.

Project Partner	Collaboration Project
USTUTT	FocusCoE, HIDALGO CoE, CATALYST, CRESATA, bwWisu,
	bwWisu2
UEDIN	CompBioMed CoE, CompBioMed2 CoE
CINECA	MAX COE, ETP4HPC, I4MS ICT, Prace Preparatory Access,
	ChEESE CoE, Hi-Fi Turb, ENI s.p.a.
SICOS BW	RECOM SERVICES, OPTIMA PHARMA
KTH	EPiGRAM-HS, RIKEN, Scania, SeRC, FLOW
ARCTUR	DIH HPC5
CERFACS	MMG, AVBP, CVT, EPEEC
BSC	POP, EoCoE
FRAUNHOFER	ViPriA, VMAP, MADESI
TERATEC	POP CoE, FocusCoE
RWTH	SFB TRR40

 Table 4: Overview of the EXCELLERAT collaboration projects

- ⁴ <u>http://www.max-centre.eu/</u>
- ⁵ <u>https://cheese-coe.eu/</u>
- ⁶ <u>https://hidalgo-project.eu/</u>
- ⁷ <u>https://www.compbiomed.eu/</u>

¹ <u>https://www.focus-coe.eu/</u>

² <u>https://www.eocoe.eu/</u>

³ <u>https://pop-coe.eu/</u>

3.2 Detailed Collaboration of the EXCELLERAT Partner

In the following, an overview of the existing, newly acquired collaboration of the EXCELLERAT partners is provided (Table 5 - Table 15).

Institution	Collaboration	Collab. Partner	Related	Time			
	CDECTA	LU DC	WP/Task	Frame			
USTUTT	CRESTA,	HLRS	WP4/14.2	Ongoing -			
	bwW1su, beW1su2			2021			
	Description: Dev	elopment of the visual	ization tool	Vistle (the			
	VISualization Testing Laboratory for Exascale computing, is an						
	extensible software environment that integrates simulations on						
	supercomputers, post-processing and parallel interactive visualization)						
	FOCUSCOE SCAPOS All Nov 2019 -						
		AG		Nov 2021			
	Description: Repr	resentation of EXCELLI	ERAT in th	e FocusCoE			
	Activities, participa	tion in the FocusCoE proje	ect board.				
				Nov. 2010			
	HIDALGO	ARH, ATOS, BUL,	WP3, WP4	Nov 2019 -			
		DIALOGIK, ECMWF,		Nov 2021			
		HLRS, ICCS, Know-					
		MK DILLS DSNC SZE					
	Description: Evalu	ation and optimization of t	ha HIDAI GO	CED codes			
	Definition of optimal simulation parameters. Examination and						
	improvement of t	he parallelization Optim	ization of p	e-processing			
	geometry preparatio	on and mesh generation	ization of pi	e-processing,			
		SCAPOS AG	WP/	Nov 2019 -			
	CHINEIDI	Serii OS AG	***	Nov 2011			
	Description · Explo	pration of Synergies in the	area of Data	Management			
	Data Analytics	station of Synergies in the	area or Data	wianagement,			
	No name	ENCL CEA. Airbus	All	Ongoing			
	Description Ident	ify notential R&D Succes	s stories wit	h Airbus and			
	Onera and work on	prototypes to show the suc	cessful annlic	cation of HPC			
	to industry	prototypes to show the suc	cossiai appin				

 Table 5: Detailed Collaboration USTUTT

Institution	Collaboration	Collab. Partner	Related	Time
	Project		WP/Task	Frame
UEDIN	CompBioMed	UEDIN, UCL, BSC,	All	Oct 2016 –
	CoE	UvA, SURFsara, Uni of		Sep 2019
		Oxford, Uni of Geneve,		_
		Uni of Sheffield, CBK,		
		UPF, LifeTec Group,		
		Acellera, Evotec UK		
		Ltd, Bull (Atos),		
		Janssen		

Description: WP Applications and g of two "HPC for N	Leader for Sustainability general User Support on located and the second	and Innova al HPC syster	ation, Porting ns, Co-author
CompBioMed2 CoE	UCL, BSC, UvA, SURFsara, Uni of Oxford, Uni of Geneve, Uni of Sheffield, CBK,	All	Oct 2019 – Sep 2023
	UK Ltd, Bull (Atos), Janssen, LRZ, Argonne and Rutgers		
Description : Port HPC systems, brin	ing Applications and gene ging in new Software Soluti	ral User Sup	port on local webinar series

in collaboration with VPH. Table 6: Detailed Collaboration UEDIN

Institution	Collaboration	Collab Partner	Related	Time
monution	Project		WP/Task	Frame
CINECA	Prace Preparatory	/	WP3	Ongoing
	Access			
	Description: HPC	Performance Improvement	for OpenFO	AM linear
	solvers, creating a	an interface to external so	olver librarie	s such as
	PETSc/Hypre thus	providing to the users a great	er choice and	flexibility
	when solving their of	cases. Increase the performance	ces, in term of	t execution
	time, for very large	test-cases (at least 50 M of cel	is) running on	massively
	parallel cluster (ord	er of thousands of cores).	1	1
	ChEESE CoE	BSC, INGV, IMO, ETH,	WP3	2019 -
		HLRS, CINECA, TUM,		2022
		LMU, university Malaga,		
		NGI, IPGP, CNRS, ATOS		• • •
	Description: Impro	ve performance of linear solve	er algebra for	simulation
	of solid earth. Optin	nization of ASHEE (Multipha	ase fluid dyna	mic model
	and solid particle	phases based on OpenEQ	ΔM) bringing	omponents
	Software Solutions	running webinar series in col	Haboration wi	ith VPH
	Hi-Fi Turb	NUMECA FRCOFTAC	WP3	2019 -
	III II I IIIO	DLR Cenaero CERFACS	W15	2012
		Imperial College London.		
		ONERA, ANSYS,		
		DASSAULT AVIATION,		
		UCLouvain, CINECA,		
		UNIBG, BSC, Safran,		
		TSAGI		
	Description: Impre	oving the capabilities of mo	dels for con	plex fluid
	flows, offers the pe	otential of reducing energy c	consumption	of aircraft,

cars, and ships, with consequent reduction in emissions and noise of combustion based engines.

Project WP/Task Frame SICOS BW RECOM HLRS WP4/T4.2 2019 SERVICES Bescription: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can
SICOS BW RECOM SERVICES HLRS WP4/T4.2 2019 Description: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can RECOM-
SERVICES Description: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can
Description: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can
Description: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can
Description: With the help of the 3D simulation software RECOM- AIOLOS, specially designed by RECOM for industrial furnaces, the combustion and pollutant formation processes of the plant process can
AIOLOS, specially designed by RECOM for industrial furnaces, the
computing and pollutant formation processes of the plant process can
composition and ponutant formation processes of the plant process can
be mapped in virtual reality without any effects on the running
operation time, for very large test-cases (at least 50 M of cells) running
on massively parallel cluster (order of thousands of cores).
OPTIMA HLRS WP4/T4.2 2018
PHARMA
Description: By using simulation and visualization technologies,
OPTIMA pharma visualizes the air flows in clean room systems as an
essential quality factor. The medium-sized company thus minimizes
the risk of planning errors, accelerates the planning process and
achieves cost savings.

Table 7: Detailed Collaboration CINECA

Table 8: Detailed Collaboration SICOS BW

Institution	Collaboration Project	Collab. Partner	Related WP/Task	Time Frame
КТН	EPiGRAM-HS	EPCC, ETH,	WP2,	2018 -
		FRAUNHOFER,	WP3	2019
		CRAY, ECMWF		
	Description: Mod	dernization/refactoring of	f Nek5000,	targeting
	heterogeneous syste	ems.		
	RIKEN	RIKEN	T3.2, T4.2	2016 -
				2021
	Description: Metho	ods for extreme-scale indus	strial CFD, in	cluding in-
	situ techniques, dyi	namic load balancing meth	nods and adap	ptive mesh
	refinement.			ſ
	Scania	Scania	N/A	2015 -
				2021
	Description: Optir	nization of industrial CF	D use cases	using ISV
	codes; benchmarkir	ng of various hardware opti	ions.	

Table 9: Detailed Collaboration KTH

Institution	Collaboration Project	Collab. Partner	Related WP/Task	Time Frame
ARCTUR	DIH HPC5	eXact Lab, Info.era, Sontius, Spin, Vahta, Xlab	WP6	Sep 2017 on-going
	Description: HPC5 in technologically Italy cross-border re	5 stimulates and sustains a oriented vertical niches fo egion.	business grov cusing in the	wth system Slovenia-

 Table 10: Detailed Collaboration ARCTUR

Institution	Collaboration	Collab. Partner	Related	Time		
	Project	DIDIA	WP/Task	Frame		
CERFACS	MMG	INRIA	WP2	On-		
				going		
	Description: Use	case C3U1 relies on mes	h adaptation	techniques		
	developed for sequential execution by INRIA on the open source library MMG. The collaboration with INRIA dates back to 4 years as we evaluate and develop new metric methods to use MMG on complex					
	physical cases.					
	AVBP	CORIA	WP2	2019 -		
				2020		
	Description : CER	FACS and CORIA have	ve a long	history of		
	collaboration for C	FD applications. They hav	e worked in t	the past on		
	parallel mesh adap	otation techniques for inc	ompressible f	flows. The		
	current collaboration	on focuses on extending	methods dev	veloped by		
	CORIA to compressible flows and introducing them to AVBP.					
	CVT	GENCI	WP3	2019		
	Description: CERFACS is part of the technology watch group of					
	GENCI, the tier1 ar	nd PRACE systems manage	er for France.	Within the		
	CVT collaboration access and support is provided to CERFACS to p					
	and optimize the co	ode on new architectures.	Within EXC	ELLERAT		
	this concerns for n	low the ARM thunderx2 a	architecture a	nd will be		
	extended in 2020 to	o AMD Roma. This work	is included i	n the WP3		
	node level and syste	em level optimization tasks	S.	2010		
	EPEEC	CERFACS	WP2,	2019 -		
	Decemintion. In the	U2020 project EDEEC	CEDEACS 4	2021		
	parallel hierarchica	t mash partitioner for onti	CERFACS u	alancing in		
	parallel nierarchical mesh partitioner for optimized load balancing in many core systems. Within EXCELLERAT we have extended it for					
	load rebalancing at	nd support for int64 requir	red for mesh	adaptation		
	(WP2: use case C3)	U1). Also this partitioner i	s required for	massivelv		
	many core systems	and is use in the WP3 sy	stem level or	otimization		
	task.					

 Table 11: Detailed Collaboration CERFACS

Public Copyright © 2019 Members of the EXCELLERAT Consortium

Institution	Collaboration	Collab. Partner	Related	Time
	Project		WP/Task	Frame
BSC	POP	/	WP3, T3.1	May
				2019 -
				ongoing
	Description: Apply detailed chemistry	v load balancing strategies t	for chemical r	eactions in
	EoCoE	BSC-INFIRA	WP2	2019
	Description : Usin	g a better solver for th	e Poisson e	quation in
	replacement of GM	RES and Conjugate Gradie	ent	

|--|

Institution	Collaboration	Collab. Partner	Related	Time
	Project		WP/Task	Frame
FRAUNH	ViPriA	SCALE, SIDACT,	WP4, T4.3	Oct
OFER		AUDI, Porsche,		2019-
		Volkswagen		Sep2022
	Description: The	goal of the project ViPriA	is the devel	lopment of
	intelligent assistan	ce systems based on art	ificial intelli	gence and
	machine learning ap	pproaches to support engine	eers in simula	tion-based,
	virtual product deve	elopment.		
	VMAP	29 partners from 6	WP4, T4.3	Sep 2017
		countries		– Aug
				2020
	Description : The	VMAP project will crea	te new conc	epts for a
	universal material	exchange interface for	or virtual e	ngineering
	workflows. These	concepts will be concretiz	ed in an ope	n software
	standard.	1	1	1
	MADESI	TU Darmstadt,	WP4, T4.3	Oct 2018
		Weidmüller Monitoring		– Sep
		Systems, ZF		2022
		Friedrichshafen		
	Description: The	analysis of sensor data	of machines,	plants or
	buildings makes it	possible to detect anomalo	ous states earl	y and thus
	to avoid further da	amage. For this purpose,	the monitori	ng data is
	searched for anom	nalies. By means of mac	hine learning	, anomaly
	detection can alread	ly be partially automated.		

Table 13: Detailed Collaboration FRAUNHOFER

Institution	Collaboration	Collab. Partner	Related	Time
	Project		WP/Task	Frame
RWTH	SFB TRR40	TU Braunschweig,	WP4, T4.3	Jul 2019
		UniBw Munich		– Jun
				2020
	Description: Appl	y dynamic mode decomp	osition of ex	perimental
	and numerical data	provided by TU Braunschv	veig and UniE	Bw Munich

to analyse the unsteady dynamics in the base flow field of space launchers.

Table 14. Detailed Conaboration RVV III				
Institution	Collaboration	Collab. Partner	Related	Time
	Project		WP/Task	Frame
TERATEC	FocusCoE,	CEA, KTH, HLRS,	WP3,	Dec 2019
		BSC, UCL, ENEA,	WP5	– Nov.
		PRACE, ICHEC,		2021
	Description: coord	ination and implementation	n of activities	supporting
	the CoEs in conne	ecting to the industrial ed	cosystem in	helping in
	promoting their serv	vices to potential clients		
	POP	BSC, USTUTT, IT4I,	WP2,	Dec 2019
		FZ Juelich, NAG,	WP3	– Nov.
		RWTH, UVSQ		2021
	Description: Busin	ess Development and Susta	ainability, ass	essment of
	the experiments and	l customer advocacy		

Table 14: Detailed Collaboration RWTH

Table 15: Detailed Collaboration TERATEC

4 Community Building

4.1 Approach

The goal on this activity is twofold: First, to ensure that EXCELLERAT is recognised by developers and users of engineering applications codes as a new key player in their ecosystem for Exascale codes in engineering, and second to link EXCELLERAT and its activities to the communities of academics and industrial users and developers, who are potential customers of EXCELLERAT's services.

The approach in EXCELLERAT (as described in D7.2 "Initial Dissemination and Collaboration Plan" [1]), is the following: to connect to already established communities instead of building "new" communities and to connect EXCELLERAT and its activities and services to these already existing communities. By doing so, EXCELLERAT gains awareness amongst potential clients and among the ecosystem of HPC engineering applications in general. To this end, we collected information from all EXCELLERAT members on national (or regional) communities and events, which are relevant to EXCELLERAT (cf. Annex).

The second pillar of EXCELLERAT's approach are the Interest Groups. A key challenge for EXCELLERAT is the integration of external stakeholders to its value network in the project's evolution process. This interaction with entities external to the consortium will enhance the success and sustainability potential of the Centre, as well as ensuring a multiplication of the available knowledge. The goal is to widen the awareness and encouraging further use of HPC in Europe.

4.2 Implementation

In order to agree on some common community related actions this input was discussed and amended with the EXCELLERAT partners during the All-hands meeting in Bologna (November 2019). Currently, we will mainly concentrate the efforts on the HPC developer and researcher communities, as the service portfolio and the business model of EXCELLERAT needs to be more advanced to engage discussion with potential clients in industrial clients (and academia). Table 16 below gives an overview of the foreseen activities in this domain for the next months.

Objective	Community activities
Establish EXCELLERAT as key	Apply for a Minisymposium at PASC 2020 ⁸
player for researchers,	Workshop: "Optimised use of FPGA in ARM
developers, and HPC specialists	architectures"
for engineering applications	Birds of a Feather (BoF) or similar event at ISC20 or
	SC20 on "Data Analytics for HPC engineering
	applications"
	BoF or similar event at ISC20 or SC20 on "Co-
	design"

Table 16: Implementation

The activities reaching out to potential clients, especially in industry, have already started and will be pursued. They will gain more importance in the second half of the project, once the service portfolio and the service offerings are well defined. Currently, the following actions are planned:

⁸ <u>https://pasc20.pasc-conference.org/</u>

Public

Copyright © 2019 Members of the EXCELLERAT Consortium

- Involvement in the NAFEMS Iberia Conference, which is taking place in Barcelona in May 2020.
- Apply for a Workshop ("Collateral Event" or "Exhibitor Initiatives") at the CAE Conference⁹ in 2020 or 2021.
- With support of FocusCoE, EXCELLERAT will attend more industrial sectorial events: Forum Teratec (June 2020); Digital Factory (as part of the Hannover Fair), April 2020.

4.3 Work Involvement of the Interest Groups

EXCELLERAT has decided to establish the so-called Interest Groups, with their main goal being the communication, monitoring and validation of the project's overall goal and the industrial, as well as technological relevance for the user communities. The Interest Groups are structured in such a way that allows providing the viewpoints of the different actors of the Centre's value chain: Code Developers/ISVs, Industrial End Users, Scientific Experts and Technology Providers.

The first webinar for the Interest Groups was done and recorded at the beginning of November 2019. The agenda for this webinar is presented in Table 17 below.

Торіс
Introduction
Role of the Interest Groups in EXCELLERAT
Presentation of the Project (Overview of EXCELLERAT)
Presenting our new HPC data exchange platform
Video + Work plan for Vistle (Visualisation)
Presentation of the BigWhoop compression library
First Preview of the Service Portal
Questions and Advice
Summary

Table 17: IG Webinar Agenda

The purpose of this webinar was to give the IG an overview about the recent results of EXCELLERAT and the project as well as integrating them into the process. Different Interest Groups including the following:

- ISVs (offering software and service in the domain of civil engineering)
- Software developers (in academia and in industry), who contribute to the development of the EXCELLERAT application codes (or similar applications)
- Users (from academia and industry), who are interested in making sure that the future applications development's take their requirements into account
- Trade unions, who may act as interface between the application developers and the end users, as for example.

Thanks to the IG Webinar, it is easier to communicate with the IG members, since they now understand the purpose and the use of EXCELLERAT even better. The members will be notified, if events within the project would be interesting for them. That might provide the ability to even meet in person, discuss the further steps and get some feedback.

⁹ <u>https://www.caeconference.com/</u>

As a result of the IG, EXCELLERAT will be able to grow and adapt according to the important counselling from the Groups. Furthermore, all of the EXCELLERAT members are able to collect more helpful information to provide the best possible services in the end.

5 Standardisation

5.1 Identification

The identification of useful new standards for HPC community is always tricky. Indeed, the community is extremely small, and even limited to the CFD community, but the diversity of problems has proven to be large. This situation makes difficult the spontaneous emergence of HPC standards.

Therefore, our identification process started the supposed end of the story, which is far from the present situation of HPC players:

This point of view was made possible because of the ten year of HPC production runs done by Safran Group, for engineering purposes, using AVBP, on a Tier-1 machine. To collect objective information, we used a joint "KAIZEN" meeting on the industrialization aspect between three Safran Group engineers and four CERFACS representatives. The outcome of the 2-day meeting is confidential, but many ideas can be reformulated in a more global way.

Figure 1: Breakdown of the Industrialization process of AVBP

As shown in Figure 1, an HPC solver, between Safran Group and CERFACS. Taken from the KAIZEN workshop at CERFACS (blurred for confidentiality.)

To help this reformulation, let us use the following user story: A Tier-0 HPC centre manager performs a survey on the past year production. The survey must prove that the power consumption was efficiently converted into mainly engineering answers. This user-story helps to imagine the future bottlenecks we will face, not while developing HPC for engineers, but while using HPC for engineers on a large scale. We divided these bottlenecks into three large categories:

- 1. Crashes,
- 2. Performances,
- 3. Sustainability.

The remaining section detail the ideas that are under investigations in this Standardization work.

Facing the exascale wall Uh? Yesterday, you said that our Fluid/Solid/Radiative The expert on solid, fluid, Hey. How is going our first Not a big deal. Find someone radiation, coupling, optimization and GPU is not exascale simulation? to investigate! coupled optimization on the full scale configuration was running on the GPU cores born yet. We are stuck Precisely. I am afraid Yes but it crashed

Figure 2: Comic Strip #1 from the future HPC blog on the website (<u>www.excellerat.eu</u> [3])

Crashes

HPC runs crash for many reasons. A very interesting action would be to extract value from these crashes.

A first idea is a "Standard Error Code" collected in the scheduling log. This would give figures on the crash origins: setup mistakes stopped by the parser, unphysical solution stopped by the modelling step, unacceptable iterative process stopped by the numeric, unacceptable configuration stopped by the data structure. Such figures would be really helpful to set priorities for code developers.

A fair amount of jobs stops comes from the reading of inputs files. We found two promising approaches to limit drastically these crashes on two levels: "parsing", then "validating".

Digging deeper, many errors are simply linked to the use of the wrong version. For example, the user asks from the solver a functionality not implemented in the version installed. Using a homogeneous versioning strategy would greatly reduce support and frustration of the players form this aspect.

Finally, the crashes that created the longest supports were the cross-competency bugs, i.e. when a bug arises from the unexpected clash of many fields: numeric, physics, data structure, compiler, optimization process, post processing. This suggests several threads to follow such as "dependency inversion" or "competencies splitting", but these ideas are not mature enough in this specific field to be prioritized yet.

Figure 3: Comic Strip #2 from the future HPC blog on the website (www.excellerat.eu [3])

Performances

Understanding HPC performances and comparing them fairly is always extremely difficult. One obvious idea is to create a unified "score card" for performances, if not on a global scale, at least on each machine. However, as EXCELLERAT core target is "Exascale for engineering", this topic must be more focused on "performance with respect to one engineering problem". This point of view is however seldom addressed, and probably requires the development of a specific HPC performances training.

Sustainability

Even if simulations are usually cheaper than experiments, the risk of not getting the needed design at the needed time is relatively high: errors in the setup, wrong modelling choices, high sensibility to a purely numerical parameter. The communication on simulation results on HPC needs special care.

If the production spans over several years, the same results must be obtained regardless of the solver versions, the queuing strategy (i.e. nb. of cores), or the machines. This is called Repeatability. However, some small differences can appear and propagates through these highly non-linear simulations. As a consequence, there is a strong need for a clear approach to define is the difference between two runs of the same simulation is acceptable or not, in other words an acceptable repeatability, for a specific engineering problem.

The drawback of having a production version is the continuous efforts required to keep it running: porting, training, debugging, testing. Such activities are not very compatible with the usual work of the academically team which developed the software. Finding a sustainable human network to back the production is a real challenge. On the technical side, a code able to evolve with a sustainable support, imply established coding standards and some software engineering best practices adapted to HPC.

Finally, an engineering problem can reasonably be solved on the future tier-0 machines only if the energetic footprint of the computation is affordable and decreasing.

5.2 Elaboration

In the first year, we started with the "crashes" topic. The parsing was investigated and gave two outcomes. As HPC solvers usually rely on low-level languages like C, C++ of Fortran, writing an in-house parser is common practice. However, the input files should always use a mainstream serialized input format adapted to human edition, such as YAML, TOML. In the case of Fortran, the Fortran Name lists is a built-in parser already on the shelf. It is limited, but often more complete than any other in-house Fortran-written parser. Furthermore, python packages (f90nml, name list) handles the reading/writing from a higher level.

By doing so, the parsing can be done using a mature and thoroughly-tested parser. At CERFACS, we created a setup wizard for AVBP using YAML input files (available upon request), and moved the input file of AVTP- a fork from AVBP- dedicated to thermal problem, to Fortran Name lists. These two actions allowed us to test the limits of these input formats.

The validation step was studied as we tried a tiny HPC-as-microservice experiment. On the web, queries are validated using the extremely mature Json-SCHEMA standard¹⁰. It was straightforward to consider the input files as "queries" and perform complex validation operations by using pre-existing tools such as jsonschema in Python3. We now recommend the use of SCHEMA instead of the numerous ifs tests that usually check the inputs of an HPC

¹⁰ <u>https://json-schema.org/</u>

solver. Indeed, this part is often the source of the highest cyclomatic complexity (i.e. bugs are hiding there) and should not be manually rewritten.

Only one versioning strategy really appeared as a standard. It is the semantic versioning¹¹ already in use for python packages for example. This will become a must-have for production, since probably most of the higher-level environments will already follow this rule.

Finally, the standard error code is still under investigation. We plan to test it in the next months within the solver AVBP. The biggest question is how to effectively log the error codes in the job scheduler database, or a separate database in open format. Once this done, a 6-month trial on the internal CERFACS production will tell if this idea gives a valuable insight.

In the next years, we will focus on "sustainability" and "performances" topics.

5.3 Diffusion

Figure 4: Comic strip #3 from the future HPC blog on the website (<u>www.excellerat.eu</u> [3])

Standardization is not an appealing topic for HPC software developers. For the time being, the diffusion will rely mostly on online training (using jupyter notebooks for example) and example software. Some resources are already online¹², and will be transferred to the EXCELLERAT portal.

The code quality is more easily accepted if a tool can automatically check the quality versus the standard, and give a score. These tools are often called "linters". As many CFD HPC solver are in Fortran, and Fortran linters are part of commercial packages, we created a small, free and open source Fortran linter¹³, with a customizable standard merging some PEP008 ideas and the existing Fortran90/95 convention¹⁴. We will see if this tool can reach its audience.

We also developed a small-scale CFD code¹⁵ (not HPC) to illustrate and train on the core ideas of software engineering that seem to be applicable to HPC.

Finally, a blog illustrating with comic strips (please see Figure 2, Figure 3 and Figure 4) the concepts arising during this task of standardization will probably be added/mirrored on the EXCELLERAT official portal. Some of the strips were used in this section.

¹¹ <u>https://semver.org/spec/v2.0.0-rc.2.html</u>

¹² <u>http://cerfacs.fr/coop/</u>

¹³ <u>https://pypi.org/project/flinter/</u>

¹⁴ <u>https://alm.engr.colostate.edu/cb/wiki/16983</u>

¹⁵ <u>https://pypi.org/project/barbatruc/</u>

6 Conclusion

Deliverable 7.3 summarizes the results so far regarding, amongst other things, Communication and Collaboration. These will be the driving force in EXCELLERAT, even more in the upcoming future. It is also important for the development of getting the needed expertise and consulting. Overall for EXCELLERAT there is a clear need for community building, which is in works and already growing thanks to the Interest Groups. The clear benefit for EXCELLERAT is that the CoE will be more visible and understandable.

This deliverable outlined the project's work and next steps for WP7 to assist and to support EXCELLERAT overall. The selection of these concrete approaches is based on present requirements as well as the constraints of the project. If some requirements change, it will be adapted accordingly. Further steps and details will be presented in the next Deliverable for WP7.

The project is still in progress therefore the data from this document will be changed and updated for the next report. In the next phase of WP7, there will be a great focus on collaboration, especially with the Interest Group members. The approach towards community building will be continued as planned, which will be described in more detail in deliverable D7.4 "Updated Dissemination, Communication, Collaboration, Community Building and Standardization Report" (Table 18).

Number	Title	Due	Status
D7.1	Website, Corporate Design and	PM 2	Submitted
	Template		
D7.2	Initial Dissemination and Collaboration	PM 3	Submitted
	Plan		
D7.3	Dissemination, Communication,	PM 12	Submitted
	Collaboration, Community Building and		
	Standardization Report		
D7.4	Updated Dissemination,	PM 24	To be
	Communication, Collaboration,		submitted
	Community Building and		
	Standardization Report		
D7.5	Final Updated Dissemination,	PM 36	To be
	Communication, Collaboration,		submitted
	Community Building and		
	Standardization Report		

Table 18: Deliverables

The first milestone (Table 19) to be reached in EXCELLERAT with the help of Work Package 7 was the project kick off. This work package has supported this. The second milestone: MS6 will not be due until the project closes.

Number	Title	Due	Status
MS1	Project Kick Off	PM 1	Done
MS6	Final Reports of all project outcomes and project close	PM 36	To be done

Table 19: Milestones

7 References

- [1] EXCELLERAT project, D7.2 "Initial Dissemination and Collaboration Plan"
- [2] EXCELLERAT project, D7.1 "Website, Corporate Design and Templates"
- [3] EXCELLERAT project, <u>https://www.excellerat.eu</u>

Annex: Input from the EXCELLERAT Partners on Community

Topics for Workshops/BoFs or similar events

- Machine Learning for CFD.
- Performance analysis and optimization of our code.
- Good practices in HPC and physical modelling code development.
- Future of computational engineering.
- The challenges of Exascaling engineering codes.
- HPC and Scientific Programming in Fortran (highlight the advantages of this language, which is often perceived as old-fashioned).
- Envisaged critical bottlenecks on incoming (pre) Exascale machines. Are our codes ready?

National / regional communities, events and communities relevant to EXCELLERAT's topics

Country	Events/communities/associatioms
Italy	Events
	https://corsi.cineca.it/en/hpc/school-numerical-methods-parallel-
	<u>cfd/roma-20191202</u>
	https://www.caeconference.com/
Spain	NAFEMS Iberia https://www.nafems.org/about/regional/iberia/
	Digital Innovation Hubs
	Spanish Digital Innovation Hub for HPC
	https://s3platform.jrc.ec.europa.eu/digital-innovation-hubs-tool/-
	/dih/1168/view
	Clusters (regional)
	Cluster Automotive Sector in La Rioja
	http://www.aeiriojaautomocion.es/en/homee/
	Cluster Automotive Sector in Valencia
	https://avia.com.es/?lang=en
	Cluster Automotive Sector in Aragon
	https://www.caaragon.com/
	Cluster Automotive Sector in Castilla y Leon
	https://www.facyl.es/en/
	Cluster Automotive Sector in Galicia
	http://www.ceaga.com/index.asp
	Cluster Automotive Sector in Madrid
	http://www.mcautomocion.es/
	Cluster Automotive Sector in Catalonia
	https://ciac.cat/en/welcome
	Cluster Aeronautic Sector in Aragon
	http://aeronauticaragon.com/
	Cluster Aerospace Sector in Basc Contry
	http://www.hegan.com/
	Cluster Aerospace Sector in Madrid
	https://www.madridaerospace.es/en/

	Cluster Aerospace Sector in Andalucia
	http://www.helicecluster.com/
Germany	- Industrie und Handelskammer IHK (Chamber of Commerce and
	Industry), Stuttgart
	- RKW Baden-Württemberg Rationalisierungs- und
	Innovationszentrum der Deutschen Wirtschaft Stuttgart
	- Leichtbau BW GmbH Landesagentur für Leichtbau Baden-
	Württemberg, Stuttgart
	- Landesverband der Baden-Württembergischen Industrie e. V.
France	Events
	Forum Teratec
	Vivatechnology (<u>https://vivatechnology.com/</u>)
	NAFEMS events
	Smaller events, such as IFPEN seminar, etc.
	ISV events, such as ESI Group (OpenFOAM), Ansys)
	Clusters and other associations (national)
	Boost aerospace (aeronautique industry + suppliers)
	http://www.boostaerospace.com/
	AFNET <u>http://afnet.fr/</u>
	Competence Cluster Aerospace Valley <u>https://www.aerospace-</u>
	<u>valley.com</u>
	GIFAS <u>https://www.gifas.asso.fr/</u>
	PFA (plateforme filière automobile: grand groups + PME autour de
	l'automobile) <u>https://pfa-auto.fr/</u>
	VEDECOM (<u>http://www.vedecom.fr/</u>)
	Moveo: Competence Cluster <u>https://pole-moveo.org/</u>
	Table 20: National/Regional communities and events