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Executive Summary 
 

The progress on the development of Exascale enabling technologies on the EXCELLERAT 

core codes is presented for the second year of the project. The developments have been driven 

by the definition of an individual code development roadmap in collaboration with WP2 and 

WP4 to demonstrate Exascale simulations for the use-cases.  

From this roadmap, several requirements were identified (see D2.1, and D2.2 on” 

Reference_Applications_Roadmap and Challenges”) and a summary of the activities conducted 

to address these requirements is presented here. Two fundamental activities are associated with 

these developments: i) Task 3.1 focused on node-level performance and ii) Task 3.2 on system-

level performance engineering. Note that main changes in the evolution of HPC systems are 

occurring at node level. This is a major reason to have a specific task focused on this topic.  

In this second year, the activities carried out by the partners on these tasks have focused on the 

development of the application demonstrators of the use-cases. At node level (Task 3.1), the 

partners' developments have focused on porting the codes to GPUs and the new vectorial 

architecture SX-Aurora from NEC.  The memory features of the modern AMD Epyc 2 have 

also been investigated. Finally, aspects related to intra-node parallelization, such as load 

balancing and OpenMP threading optimizations, have been considered. At the system level 

(Task 3.2), the focus has been on strong scaling analyses and on the optimization of the 

communication kernels. Regarding the advanced meshing techniques (Task 3.3), most of the 

work has been performed on the core code Alya, where the AMR workflow has been completed, 

and on the code AVBP, where an in-house implementation using the TREE PART domain 

decomposition library has been performed. For AVBP, different error estimators for AMR have 

been tested. Regarding emerging technologies, the focus has been placed on FPGAs and 

advanced developments for GPUs and ARM-based architectures.  

The advances in HPC algorithms and computational methodologies presented here are part of 

the expertise of the EXCELLERAT consortium and conform services that EXCELLERAT is 

delivering to the engineering community.  
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1 Introduction 
The present document is a summary of the progress of Exa-enabling enhancements and 

benchmarks performed on the EXCELLERAT core codes Alya and AVBP in year two of the 

project. The report is divided into different sections that refer to the different tasks of the 

EXCELLERAT WP3. This deliverable is made from the different contributions of the partners, 

which have been compiled and linked to the requirements of the use-cases defined in WP2. 

2 Node-level performance optimization - Task 3.1 
Important changes in the evolution of HPC systems are occurring at node level. Consequently, 

the complexity associated with unlocking the intra-node performance of computing systems has 

increased substantially. This task addresses all the aspects related to performance at node level, 

including code porting and algorithm refactoring on various architectures. Subsequently, the 

activities carried out in T3.1 for the second year of the EXCELLERAT project are presented. 

2.1 Nek5000  

2.1.1 Improvement of the small matrix-matrix multiplication kernel for 
Nek5000 on a single GPU 

 

Figure 1: Performance results for Nekbone on a single GPU using 9th-order polynomials. 

In the second year, the work focused on further optimizing the GPU performance of Nekbone. 

The work is based on the initial porting efforts reported in deliverable D3.1 “Report Exa-

enabling enhancements and benchmarks”, where tuned OpenACC and CUDA kernels were 

presented. The tuned CUDA kernels utilized a three-dimensional structure in shared memory, 

where one thread was allocated for each nodal point in the element. Thus, this approach was 

limited by the amount of shared memory available in a device and could not be used for large 

polynomial orders. Therefore, our main new contribution has been to utilize a new, two-

dimensional thread structure, assigning threads in slices of an element, and progressing each 

slice in lockstep with each other. In Fig .1, how this new 2D structure improves performance 

with up to 10% compared to the previous shared memory implementation is shown. 

2.1.2 Porting Nek5000 to SX-Aurora 

In the course of the second-year porting and tuning of the entire spectral element code Nek5000 

to the SX-Aurora TSUBASA, the recent vector computer from NEC, has started. Therefore, a 

similar approach as for the porting work to GPUs has been followed. The mini-app Nekbone 
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that was used for the initial porting and tuning of key kernels has been used. Particularly for 

node-level optimization the CEED Bake-off has been used for the Kernel BK5 [1] as a model 

problem to find optimal loop reordering for TSUBASA. Similar to a GPU, TSUBASA needs a 

large amount of work per element in order to achieve good performance. The initial OpenACC 

port of Nekbone [2] faced similar problems with the CPU version of the code. Therefore, 

several function calls were merged into one large loop nest per element, as illustrated in Fig .2. 

Albeit this formulation performed well on a GPU, the loop nest was too large, and suffered 

from too different access patterns for all three variables for the compiler to generate efficient 

vector code.  

 

Figure 2: An illustration of the merged loop nests in the OpenACC version. 

 

In order to increase vectorization, the loop nest was split into three different loops, one for each 

variable, as shown in Fig .3, allowing the compiler to vectorize each loop.  

 

Figure 3: An example of the new vectorizable loop constructs for one of the variables. 

 

For evaluation purposes, the BK5 was executed on a single Aurora node for a set of 128-8192 

elements for 9th-order polynomials. In Fig .4, the total GFLOPS/s when running the BK5 

benchmark on one to eight cores is presented. The new transformations achieved more than 

40% of the theoretical peak performance of a single core and almost 20% of the theoretical peak 

performance of a TSUBASA when using all eight cores. 

  do e = 1, nelt 
     do k,j,i = 1, n ! tripel loop nest 
        ur = 0 
        us = 0 
        ut = 0 
        do l = 1, n 
           ur = ur + dxm1(i,l)*u(l,j,k,e) 
           us = us + dxm1(j,l)*u(i,l,k,e) 
           ut = ut + dxm1(k,l)*u(i,j,l,e) 
        end do 
        wr(i,j,k,e) = g(i,j,k,1,e)*ur 
                    + g(i,j,k,2,e)*us 
                    + g(i,j,k,3,e)*ut 
        ws(i,j,k,e) = g(i,j,k,2,e)*ur 
                    + g(i,j,k,4,e)*us 
                    + g(i,j,k,5,e)*ut 
        wt(i,j,k,e) = g(i,j,k,3,e)*ur 
                    + g(i,j,k,5,e)*us 
                    + g(i,j,k,6,e)*ut 
     end do ! end tripel loop nest k,j,i 

  end do 

do k = 1, n 
   do i = 1, n 
      do j = 1, n 
         do e = 1, nelt 
            ws = 0d0 
            !NEC$ unroll_completely 
            do l = 1, n 
               ws = ws + dxm1(j,l)*u(i,l,k,e) 
            end do 
            us(i,j,k,e) = ws 
         end do 
      end do 
   end do 

end do 
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Figure 4: Performance of BK5 on a single SX-Aurora node for various numbers of elements and cores. 

2.1.3 Preconditioner of the Nek5000 pressure calculation on GPUs 

After improving small matrix-matrix multiplication kernels, the focus was set on increasing the 

performance of the pressure calculation as this is one of the most time-consuming simulation 

phases of the OpenACC implementation of the Nek5000. It adapts a relatively complex 

algorithm as this linear sub-problem is closely related to a divergence-free constraint and is 

usually very ill-conditioned. For this reason, it requires special preconditioning techniques that 

fit spectral element methods (SEM).  

Nek5000 uses two possible preconditioning strategies taking advantage of existing domain 

decomposition: additive overlapping Schwarz and additive Schwarz-multigrid methods. Both 

methods split the preconditioner operator in two summed parts: the local and global solvers.  

Additive overlapping Schwarz acts within each spectral element and uses a fast diagonalization 

method to reduce short-wavelength errors. Although information is exchanged between 

boundary elements during the local solve, the error propagation is rather slow and an additional 

operator is required to reduce long-wavelength errors. This is achieved by the global solver 

acting on a reduced number of degrees of freedom covering the whole computational domain. 

The main difference between simple Schwarz and Schwarz-multigrid methods is the local 

solver. While in the former case a single solve is performed on all elements, in the latter case a 

geometrical multigrid step reducing gradually the number of degrees of freedom is executed.  

At present the simple Schwarz preconditioner is analyzed to identify possible modifications for 

improvements. In the first step the iterative solver (which uses the GMRES algorithm) was 

optimized by merging OpenACC kernels, e.g. for the vlsc2 routine several kernels have been 

combined. Fig .5 shows that this leads to a reduction in total time for the single kernel compared 

to the time required by the many kernels that the new kernel replaces. 
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Figure 5: Trace for the GMRES implementation without merging of OpenACC kennels (top) with 

merging (bottom). 

Subsequently, the preconditioner itself was adapted. The local solve executes mostly matrix-

matrix multiplication and is performed on the GPU, whereas the global solve is performed on 

the CPU as it acts on the element vertices only and is quite communication intensive. 

Overlapping these two operations could provide a noticeable time reduction.  

Unfortunately, both the local and global solve currently use the gslib communication library, 

which is not thread safe. This makes it impossible to overlap all of the global solve and local 

solve in separate threads. Therefore, the global solver was overlapped with fast diagonalization 

calculations only. 

To investigate the effects of overlapping a stenotic pipe flow was considered. This test case has 

attracted many experimental and computational studies because of its geometric similarities 

with industrial applications such as Venturi pipes. The GPU version of the code was executed 

for simulations of a stenotic pipe flow, consisting of 3200 elements with 7th polynomial order, 

on a single GPU node of the Swan system. Swan is a Cray in-house XC40 system and each of 

GPU nodes has one NVIDIA P100 GPU and 18 Intel Xeon Broadwell cores.  Overlapping the 

GPU calculation of the local solve with the global solve on this system results in a reduction of 

the execution of both solves from 92 to 70 seconds. 

2.2 AVBP  

 

In the last period, efforts have focused on the comparison of the node level performance of 

AVBP on multiple architectures:  Intel, AMD, and ARM. CERFACS was granted access to the 

IRENE Joliot Curie AMD partition from PRACE at TGCC during its testing phase and to a 

PRACE allocation (racoe006). The AMD Epyc 2 architecture offers a unique topology were 

process placement can impact cache and memory bandwidth access. The IRENE AMD system 
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uses the novel AMD Epyc 2 architecture with two sixty-four core processors per nodes. An 

admin access to the nodes furthermore allowed to measure the impact of the CPU clocking 

frequency on the simulation. Using these features, it was possible to measure the impact of the 

architecture’s characteristics on an AVBP execution of simulation of a von Karman street 

simulation. Using the AMDuProf tool the bandwidth usage at runtime on a single node was 

analyzed.  Both results are shown below in Fig. 6.  

      

 
Figure 6: Code characterization for AVBP on a single AMD node (left). Measured bandwidth usage for a 

single node running AVBP at runtime using AMDuProf (right). 

 

The code characterization reveals that AVBP remains compute bound with a 60% dependency 

of the frequency of the CPU (turboboost was disabled for these tests, but improved performance 

by 20% on latter cases), see Fig. 6.  The high core count of the Epyc architecture (64 cores) has 

some but limited impact on simulation time (here 27%). This is due to bandwidth restrictions. 

This is verified by the bandwidth usage measurement at runtime on a single node: the code uses 

up to 150GB/s out of the 400GB/s that are available.     

2.3 Alya 
 

The application of a dynamic load balance strategy for the integration of stiff chemical source 

terms in combustion simulations with detailed chemistry was addressed. Chemical reactions 

occur in thin layers, which are usually characterized by highly non-linear and stiff chemical 

reaction rates that are very costly to evaluate. In fact, this problem is of relevance when more 

realistic fuels or surrogates are to be considered. In Alya, the source terms are integrated using 

an implicit first-order backward Euler scheme based on the library CVODE [3]. The 

computational costs of the chemical integration take a large share of the overall timestep for 

complex fuel. Therefore, strategies for increasing the performance are of paramount relevance. 

The high imbalance is inherent to the problem being solved. The chemical reaction is only 

solved at the elements containing the flame and for a certain temperature range. Therefore, the 

imbalance cannot be addressed by repartitioning the domain, because the problem is unsteady 

and the flame undertakes some dynamics that cannot be predicted. In collaboration with POP 

(https://pop-coe.eu), the DLB library (Dynamic Load Balancing library) [4] has been integrated 

into Alya to reduce the imbalance and to increase the computational performance in combustion 

simulations with stiff chemistry. 
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Figure 7. Scalability of the chemical integration loop: detailed chemistry (left) and reduced chemistry 

(right). 

 

In Fig. 7, the duration of the integration loop for the detailed and reduced chemistry cases, 

where the x-axis represents the different numbers of MPI ranks corresponding to 1, 2, 4, 8, and 

16 nodes on Marenostrum IV supercomputer, is plotted. Obviously, the DLB integration 

improves the pure MPI code in all cases. It is furthermore observable that the impact of the 

grain size becomes more important when the number of MPI processes is increased. A high 

grain size value has a negative impact on the performance when DLB is used and the number 

of MPI ranks is increased. This is due to the fact that the increase of the number of MPI ranks 

leads to a lower load per rank, and packing the load in big chunks does not allow for malleability 

to balance the load by DLB. The optimum grain size in all the cases is found to be around 32. 

In the reduced chemistry case using small or large grain sizes has a negative impact on the 

performance. That is, in the case of large grain sized the same situation as in the detailed 

chemistry use case appears, i.e., large grain sizes do not offer sufficient flexibility to load 

balance the computation. As it can be seen in Fig. 7, using small grain sizes in the reduced 

chemistry case leads to a reduced impact of DLB on the performance due to the smaller relative 

weight of the integration loop in the whole time step. 

 

The speed up obtained in the integration loop using DLB with different grain sizes is compared 

to results of a pure MPI version running with different numbers of MPI ranks in Fig. 8. For 

clarity, only the largest and smallest grain sizes (i.e., 1 and 128) and the ones that delivered best 

performance (i.e., 16, 32 and 64) are shown. From the results it becomes obvious that with DLB 

using a grain size of 16 the execution can be accelerated by a factor of 2x in all the cases for 

the detailed chemistry case, except when using 16 nodes (768 MPI ranks), where a speed up of 

1.8x is achieved. It is observed that the more nodes are used the less speed up DLB is able to 

obtain. This is due to DLB not featuring load balancing across nodes and also because the 

amount of computation per MPI rank is reduced. This leads to less granularity hindering optimal 

load balancing. For the detailed chemistry case, the speed up using 48 and 96 MPI ranks (1 and 

2 nodes) is more impressive than in the detailed chemistry case. Here, the speed up reaches 

factors 6x and 4.5x. This is because the load balance in this case is fairly low, leaving a lot of 

space for improvement by applying DLB. When the problem is partitioned among more MPI 

ranks, the load is more distributed, leaving less load imbalance to address by DLB. 
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Figure 8. Speed up of DLB compared to the pure MPI execution for the integration loop: detailed 

chemistry (left) and reduced chemistry (right). 

2.4 CODA 

During the second year of the project, for CODA two main tasks were carried out in regard to 

node-level performance optimization. First, the linear solver library Spliss to run the 

computationally intensive linear solver on GPUs was integrated into CODA. Second, the 

performance of CODA on two different state-of-the-art CPU architectures from AMD and Intel 

was evaluated and compared to CODA’s performance and threading capabilities. 

2.4.1 Executing the Linear Solver on GPUs 

Solving linear equation systems is an integral part of implicit methods in computational fluid 

dynamics (CFD). The efficient solving of large linear systems that result from the discretization 

of the Reynolds-averaged Navier-Stokes equations (RANS) in CFD methods requires 

algorithms that are well adapted to the specific numerical problems, which is usually not 

covered by generic solver libraries.  

CODA introduced the Spliss (Sparse Linear System Solver) library developed for CODA, 

although not exclusively. Spliss aims to provide a library for linear solvers that, on the one 

hand, is tailored to the wide requirements of CFD applications but, on the other hand, is 

independent of the particular CFD solver. A key design aspect of Spliss is computational 

efficiency and parallel scalability for current and emerging HPC technologies. Spliss not only 

leverages all available parallelization levels of contemporary HPC platforms, but also offers 

different approaches on these levels. On the distributed level, Spliss provides the classical two-

sided communication approach using MPI as well as a modern one-sided communication 

approach using the GASPI library [5]. Furthermore, hybrid parallelization using OpenMP and 

heterogeneous parallelization on GPU devices are available. 

Focusing on the specific task of linear-system solving allows for integrating more advanced, 

but also more complex, hardware-adapted optimizations, while at the same time hiding this 

complexity from the CFD solver CODA. One example is the usage of GPUs. Spliss enables the 

execution of the computationally intensive linear solver on GPUs. However, the Spliss interface 

design provides this capability to a user in a transparent way. By that means, CODA can 

leverage GPUs without the necessity of any code adaption in CODA.  

The work carried out focused on the porting of Spliss to GPUs, which has been achieved. After 

DLR’s GPU cluster was put into operation during this period (FLUCS-R6, see D.2.1 and D2.2 

for reference), first performance results of Spliss on GPUs were evaluated and an up to 25x 

runtime improvement for initial benchmarks was achieved. Currently, Spliss is extended to 

support the efficient usage of multiple GPUs per compute node. Spliss is now ready to be used 

by CODA, whereas the computation in the linear solver can be transparently switched between 

CPU and GPU. Upcoming work will focus on testing and evaluating the entire workflow of 

CODA with the linear solver running on GPUs. 
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2.4.2 Comparing Current CPU Architectures 

After getting access to DLR’s new HPC system CARA, which is based on AMD’s Epyc 

architecture and an Intel Cascade Lake test system during the period (FLUCS-R4, FLUCS-R8, 

both delayed), both systems were evaluated with the Use Case C6U1 (FLUCS-T7, FLUCS-T9, 

both in ongoing). See D.2.1 and D2.2 for reference in Requirements and Tasks for FLUCS-TX 

and FLUCS-RX. The initial results were compared and the ideal hybrid MPI-OpenMP setup 

for both architectures were identified. Furthermore, a limitation in the AMD Epyc 2 architecture 

that limits the efficient hybrid usage to four OpenMP threads per MPI was found. This 

limitation restricts CODA’s hybrid capabilities and hence also its scalability, since CODA relies 

on using as many OpenMP threads per MPI rank as possible. The Intel Cascade Lake 

architecture did not impose those limitations. 

3 System-level performance optimization - Task 3.2 
This task is focused on identifying and overcoming bottlenecks at system level. Load balancing 

and communication/synchronization reductions are key aspects to achieve parallel 

performance. Advanced features of MPI will be considered throughout the project. The 

developments carried out in this task include both implementation optimizations and algorithm 

refactoring. In the following the activities carried out in T3.2 for the second year of the 

EXCELLERAT project are presented. 

3.1 Nek5000 

3.1.1 Communication kernels for Nek5000 on SX-Aurora: 

To extend the work on BK5 on the SX-Aurora presented in Section 2.1.2 to a full Nekbone 

implementation, an efficient gather-scatter operation is needed, both for summation between 

elements on a single core and global summation between elements on different cores sharing 

degrees of freedom.  

The gather-scatter implementation in Nekbone (gslib) heavily relies on pre-processor macros 

and complex pointer arithmetic, which prevents vectorization by the NEC compiler. This has 

also been observed when porting Nek5000 to GPUs, in particular for the electromagnetics 

solver where gslib was one of the main bottlenecks [6].  

One of the objectives in the Horizon 2020 project EPiGRAM-HS (https://epigram-hs.eu) is to 

carry out a refactoring of Nek5000 to modern Fortran, and to enable the code to use large-scale 

heterogenous systems. Of particular interest for the current work is the refactored version’s 

newly developed gather-scatter kernel, implemented directly in Fortran, with more vectorizable 

loop constructs. Together with EPiGRAM-HS, the new gather-scatter kernel has been 

optimized for the SX-Aurora.  

To obtain good performance on TSUBASA, each gather (and scatter) operation needs to be 

injective, otherwise loops cannot be vectorized, and the optimized machine instructions cannot 

be utilized. Compared to gslib, the EPiGRAM-HS gather-scatter (ehs-gs) retains information 

about the underlying mesh topology. Based on this information, the gather-scatter operations 

can be divided into a non-injective part, for degrees of freedom on edges and corners with an 

arbitrary number of neighbors, and an injective part for degrees of freedom on a facet with a 

single neighbor. In Fig. 9, the performance of the new ehs-gs is compared to gslib when 

 

https://epigram-hs.eu/
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running the full Nekbone, using one and eight cores respectively. With the more vectorizable 

loops, ehs-gs is overall always faster, achieving up to more than twice the performance. 

 

Figure 9: Performance of the tuned Nekbone using two different gather-scatter kernels, standard (gslib) 

and tuned (ehs-gs), evaluated on a single VE using one and eight cores respectively. 

 

Furthermore, the new gather-scatter implementation also allows to overlap communication. In 

the old gslib, first all gather-scatter operations between local elements were performed, before 

shared entities were exchanged and a final gather-scatter of shared entities finalized the entire 

operation. The new implementation (ehs-gs) first gathers all the shared entities and initiates the 

non-blocking communication. While messages are in flight, the local gather-scatter operation 

is performed before each rank is waiting for messages to arrive. Once all expected messages 

have been received, all final gather-scatter operations are performed on the received data. The 

performance of the new overlapping formulation was evaluated using up to eight SX-Aurora 

cards, Vector Engines (VEs), running Nekbone for three different problem sizes with 1024, 

4096, and 8192 elements. In Fig. 10 it can be seen that good scalability is only obtained if there 

are sufficient elements assigned to each VE. For the largest case, a slightly super-linear speed 

up on up to four VEs is achieved.  

 

Figure 10: Performance results for Nekbone running across multiple Vector Engines (VEs). 
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3.1.2 Communication kernel for local solver in Nek5000 pressure 
preconditioner: 

In section 2.1.3, the Nek5000 pressure preconditioner, which is based on the additive 

overlapping Schwarz method, is briefly described. Focusing on a local solver in this algorithm 

possible ways of refactoring the communication kernels were analyzed.  

The local solve performs two exchanges of element face data: The first is used to assemble the 

sub-domain for the fast diagonalization method, and the second redistributes the solution. In 

both cases, Nek5000 applies a standard gather-scatter strategy utilizing the gslib library. 

However, in this specific situation the operations performed by gslib are far more complex 

actually needed. The library sums up all element’s external degrees of freedom including faces, 

edges, and vertices. The local solver, however, only requires the interior face information. That 

is, the sum of the edges and vertices, as calculated by gslib, is not required for the calculation. 

Solely communicating and calculating the required information hence simplifies the calculation 

and reduces the necessary communication overhead. 

Another possible improvement can be obtained by overlapping the communication and the 

calculation, which is not supported by gslib. At present, an experimental local solve 

communicator for conforming meshes is implemented and tests on non-AMR cases have 

started. The important difference between the new approach and what is done by gslib is the 

treatment of faces as objects and not as a collection of separate grid points, where each point 

possesses a unique global identification number. In the new communicator no global numbering 

that would require a local ordering is used. The consequence of this design is the explicit 

formulation of a transformation operator related to relative face alignment. In gslib, the face 

alignment is hidden by the global numbering of grid points. The code is continuously be 

developed, non-conforming mesh support will be added soon, and tests will be performed on 

AMR test cases. 

3.2 AVBP 

Strong scaling experiments of AVBP have been executed on the IRENE AMD system on up to 

131072 cores using a 1.4 Billion element mesh. The results are shown in Fig.  11. Similar to 

the case presented in D3.1, domain decomposition was performed using Treepart [PR-PA-20-

115] that maps the local hardware topology of the node to the domain decomposition to improve 

data locally and to reduce communications. The test was performed using the Intel 19 compiler 

suite and OpenMPI 4.0.2 on full nodes using flat MPI. For these tests it was not possible to use 

MPI3’s one sided communication capabilities as the OpenMPI implementation did not support 

shared windows at that time (this has been resolved since, but tests have not been performed a 

second time yet).   
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Figure 11: Strong scaling performance of the AVBP code on the IRENE Joliot Curie system (AMD 

architecture). Circle: 1.4B rocket engine demonstrator (PRACE collaboration); Continuous line 

represents the ideal acceleration.  

 

Similar to the previous tests presented in D3.1, it seems that for AVBP the domain 

decomposition technique is key to reach exascale performance at the system level.  Most issues 

encountered so far have been related to global communication in the domain decomposition 

phase. Using, however, TREEPART these issues have been resolved.  

 

Weak scaling experiments have been performed to compare the full to half node performance 

of AVBP and the Intel MPI 19 to OpenMPI 4.0.2 performance.  The results are show in Figure 

12. Since the AVBP code uses fully unstructured grids with a 0 cell to 1 node halo 

communication, it is impossible to generate perfectly balanced weak scaling tests. As a 

reference for the tests the un-partitioned total number of cells on a simple turbulent channel 

case starting at 1M cells for 128 Cores / 1 node up to 256 nodes has been used. A performance 

test shows a very large performance gap between Intel MPI and OpenMPI. As the system is 

AMD in nature and new, it is probable that optimizations are required to account for the strange 

core count per node. Nevertheless, beside the shift in performance both implementations behave 

in the same manner when using a full node.  

 

Half-node tests were performed to verify the influence on node bandwidth and if the load per 

node has an impact on the scalability. The scalability remains largely the same albeit shifted. A 

20% improvement in reduced computation time (RCT), which is the time required to do an 

iteration and a cell of the mesh on one core. RCT [us/iteration/node,core] is observed when 

using half the cores per node showing a limited but real impact of bandwidth on the performance 

of the code. However, this performance improvement is not sufficient to compensate the 2x 

factor in computational costs from using only half the cores per node. A paper was accepted in 

the PASC '20 conference containing more details [21]. 
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Figure 12: Weak scaling performance comparison: full to half node performance and Intel MPI 19 to 

OpenMPI 4.0.2 

 

3.3 Alya 

Regarding system level performance optimization, investigations on the strong scaling 

performance of the second use case U1C2 have been in focus for Alya. In more detail, in U1C2 

the multi-phase reacting flow field of a double-swirl airblast concept spray flame of a test rig 

being constructed at TU Berlin is simulated. The performance of a Eulerian-Lagrangian 

framework, where the disperse phase is represented by Lagrangian droplets and the gas phase 

is described by the Eulerian phase, has been analyzed. The mesh consists of 1 billion cells and 

about 200k particles exist in the domain. The tests aim at showing the acceleration achieved 

from using 100 up to 400 nodes of the MareNostrum IV supercomputer. The parallel efficiency 

(PE) achieved is 91%. The MareNostrum nodes are composed of 48 CPU-cores, i.e., the 

maximum number of CPU-cores considered is 19200. Note that this is a multi-physics case that 

includes more physical phenomena than the flow simulation of the use case U1C1 presented in 

the first-year deliverable D3.1, where only the scaling of the Navier-Stokes solver was assessed. 

In the present case, the algorithm solves for the particle transport, heating and evaporation, the 

Navier-Stokes and energy equations, and the transport equations for the controlling variables 

used in the flamelet method.   
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Figure 13: Strong scaling performance of the Alya code on the MareNostrum IV supercomputer for the 

case U1C2. 

 

3.4 CODA 

During the second year of the project, two main tasks were carried out for CODA in regard to 

system-level performance optimization. First, CODA and the surrounding workflow were 

adapted and tuned to DLR’s new HPC cluster CARA. Second, the Use Case C6U1 was assessed 

on the new HPC cluster and CODA’s scalability was evaluated. 

3.4.1 Adapting and Tuning CODA on the New DLR HPC System CARA 

After DLR’s new HPC cluster CARA went operational in February 2020 (FLUCS-R4, 

delayed), CODA and the surrounding workflow were installed and intensively tested (FLUCS-

T4). The AMD Epyc 2 processor introduces new architecture features that need to be considered 

in CODA, such as two-level NUMA domains. CODA uses classical domain decomposition to 

make use of distributed-memory parallelism (MPI) and additional sub-domain decomposition 

to make use of shared-memory parallelism (OpenMP) resulting in a hybrid two-level 

parallelization. Each sub-domain is processed by a dedicated software thread that is mapped 

one-to-one to a hardware thread to maximize data locality. Therefore, the performance of 

CODA was evaluated on the new architecture with particular focus on the hybrid setup of MPI 

ranks and OpenMP threads. CODA’s performance depends on a) the size of the NUMA 

domains and b) the introduced overhead for thread operation across multiple NUMA domains. 

CODA was evaluated with different hybrid setups that correspond to different architectural 

characteristics of the AMD Epyc 2 processor. 

It was found that thread operation across the second-level NUMA domains (across sockets) 

introduces a significant overhead in the range of 200% to 300% slower runtimes. In addition, 

thread operation across the first-level NUMA domain, i.e., using more than 8 OpenMP threads 

per MPI rank, introduces a small overhead (3%-12%) in comparison to using 8 OpenMP threads 

per MPI rank. Next to the NUMA domains, the CPU grouping by last-level cache had a 

noticeable impact. On the AMD Epyc 2 architecture each four CPUs share a last-level cache 

(L3 cache). Thread operation across multiple shared last-level caches, i.e., using more than 4 

OpenMP threads per MPI rank, introduces an additional overhead of up to 20% in comparison 

to 4 OpenMP threads per MPI rank. Furthermore, using the two-way simultaneous 
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multithreading (SMT), i.e., using two hardware threads per physical CPU core, allows an 

addition performance gain of up to 20% to the according setup with only one hardware thread 

per CPU core. Consequently, the most efficient hybrid setup is 4 OpenMP threads per MPI rank 

or 8 OpenMP threads per MPI rank with two-way simultaneous multithreading. 

3.4.1 Scalability Evaluation on the New DLR HPC System CARA 

After identifying the ideal hybrid setup and adapting all workflow components to CARA 

(FLUCS-T4), efforts were focused on evaluating the scalability of CODA on CARA using the 

use-case C6U1 (part of FLUCS-T7). 

The use-case solves the Reynolds-averaged Navier-Stokes equations (RANS) with a Spalart-

Allmaras turbulence model (SA-neg). It uses finite volume spatial discretization with an 

implicit Euler time integration. The input of the use case is an unstructured prism mesh from 

the NASA Common Research Model (CRM) [7] with about 5 million points and 10 million 

volume elements. The mesh is a rather small mesh chosen for strong scalability analysis of 

CODA at reasonable scales. Production meshes are at least 20 times larger and accordingly 

achieve a good efficiency on much higher scales. For the small mesh, the Use Case C6U1 

achieves about 60% parallel efficiency on the largest available partition on CARA with 512 

nodes and 32k cores. 

 
Figure 14: Scalability of CODA on CARA, DLR’s HPC cluster based on AMD Eypc 2 processors. 

 

4 Implementation of advanced meshing techniques - Task 3.3 
This section describes the activities related to the meshing techniques that have been developed 

during the second year of the project. There are two partners (BSC and CERFACS) involved 

in the development of the adaptive mesh refinement (AMR) with two codes, Alya and AVBP. 

The third partner involved in this task is KTH, as Nek5000 has already this capability and the 

effort is only directed to optimizing this tool for certain conditions, so the details of this effort 

is not reported here, but on WP2 in particular for the deliverable D2.3. 
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4.1 Management Report 

We maintain a living document which summarizes each Reference Application in turn, 

including details of ownership, contacts, meshes and meshing software currently employed, 

associated Use Cases, work done to date under T3.3, and work planned for their T3.3 

effort.  This will give all members of T3.3 an overview of each Reference Applications status 

which can, in turn, inform other Reference Application owner to possible synergies regarding 

meshing techniques in general but also, and more importantly, the topic of adaptive mesh 

refinement in the realm of Exascale.  

  

As part of our living document, we have a section on the Best Practice in Meshing, describing 

the state-of-the-art and the future of meshing software in general, and for CFD in 

particular. This has improved our understanding of FEM techniques in general.  This will form 

input to our CoE’s D4.5 Best Practice Guide. The new UK Exascale programme, namely 

ExCALIBUR, contains an Exascale Mesh Network named ELEMENT, which ran a 2-day 

online workshop in October 2020.  EXCELLERAT was in attendance, and discussions were 

presented and held regarding parallel mesh generation, end user stories, geometry definition, 

CAD interaction, and mesh adaptivity. This workshop has proved invaluable to inform the 

Section on Best Practice in Meshing. 

4.2 CAD software mesh workflow in FEniCS 

A workflow has been created to use CAD software meshes, including STLs, as input to a 

FEniCS simulation. 

  

4.3 Mesh adaptivity in Nek5000 

AMR simulations are now possible with Nek5000, thanks to work performed by 

CINECA.  This was done using resources from WP2, and is reported in detail in 

D2.3.  Nek5000 now employs a conforming, high order (suitable for SEM), hex-based mesh; 

surface representation and mesh surface projection. 

4.4 Mesh adaptivity in Alya 

The mesh adaptation corresponds to the requirement Alya-R3. The work in mesh adaptivity 

started in the second year of the project, being supported by some developments of the first 

year, namely Alya-R1 (fully parallel workflow) and Alya-R2 (dynamic load balance), 

  

Indeed, the implementation of dynamic load balancing, based on mesh re-partitioning, solved 

one of the critical features required for mesh adaptivity: restarting a simulation online with a 

new partitioning. This capability requires dynamic data structures and the migration of data 

between parallel processes.  

  

To complete the mesh adaptivity workflow, two steps within the simulation restart process had 

to be interleaved: i) the generation of the new mesh according to the properties of the physics 

solution and ii) the interpolation of the simulation fields from the original mesh to the new 

mesh.  

  

Regarding the new mesh generation, we have taken advantage of the work carried out in the 

ParSec project from the WP8 of PRACE 6IP [8], where Alya has been linked with the mesh 

generator gmsh. In EXCELLERAT, we have focused on evaluating meaningful error 
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estimators, and the corresponding mesh size estimators, to be provided to gmsh. This process 

is illustrated in Fig. 15. 

 

 
Figure 15: Solution error and mesh size estimation 

 

For error estimation, different strategies have been implemented. Tests revealed basing the error 

evaluation on a Laplacian filter that is applied to the solution field to be the most promising 

approach. Then, a sizing formula, provided by gmsh, was used to evaluate a size field as an 

input for gmsh to generate the new mesh.   

 

There are several options to provide the size field to gmsh. Figure 16 illustrates the variants that 

we have implemented in Alya. The top image shows the background mesh, distributed into two 

subdomains, and in the bottom, from left to right, the bin, the octree, and the octbin strategies 

are depicted. The octbin method is the most flexible way to provide a zonal distribution of the 

sizing to gmsh. It can achieve the bin's accuracy with fewer memory requirements and allows 

for smoother transitions between refinements than the octree approach. 

 

 
 

Figure 16: Options for size field representation. 
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The other input that needs to be provided to gmsh is the surface mesh, which defines the sub-

domains boundaries. Each process generates a new mesh within the boundaries of its 

subdomain's surface. The main issue with the parallelization of the re-meshing is to deal with 

the mesh generation in the subdomains border. Since a conformal approach has been 

implemented, the interface elements between two subdomains need to match. 

 

To solve this problem, an interface freezing approach has been adopted. In this approach, the 

interface elements are not changed such that each process can adapt the rest of its subdomain 

without falling into incoherent mesh configurations at the interface. However, this approach 

requires an iterative process, interleaving displacement of the interface and local remeshing, to 

ensure that the overall domain is re-meshed. This interface freezing method is illustrated in Fig. 

17.  

 
Figure 17. Parallelization of mesh adaptivity based on the interface freezing approach. 

 

Finally, the load balancing functionalities, already implemented in Alya in the first year of the 

project, are used to balance the new mesh distribution that may have become unbalanced due 

to different re-meshing requirements on different domain zones.  

 

The parallel interpolation tools already available into the Alya kernel for the interpolation step 

have also been used. Therefore, the overall parallel mesh adaptation workflow has been 

completed in the second year of the project. At present, the implementations in different 

examples are verified. For instance, Fig. 18 presents a snapshot of the mesh adaptation for the 

simulation of the flow around a cylinder at Re=120. It can be observed that the mesh is 

concentrated around the vortex structures of the velocity field. 

 
 

Figure 18: Mesh adaptation for the flow around cylinder at Re=120. 
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The next steps for the third year of the project regarding mesh adaptivity will be:  i) optimize 

the workflow to make it efficient on large scale simulations, and ii) apply mesh adaptivity in 

the use cases related to the Alya code: U1C2 and U2C2. 

  

4.5 Mesh adaptivity in AVBP 

  

For AVBP, the work on mesh adaptivity has recently been completed. It was based on the 

requirements specified in D2.1 and D.2.2. AVBP-R1: dynamic mesh structure at runtime, 

AVBP-R2: accurate interpolation methods, AVBP-R4: Incorporate automatic mesh refinement 

and AVBP-R5: remeshing. All requirements have been completed recently. 

  

A full AMR workflow is now available in AVBP using the CORIA-YALES2 library (CORIS-

CNRS) [9] based on the MMG library (INRIA) [10]. The mesh adaptation strategy is shown in 

Fig. 19. In this workflow, mesh adaptation is handled as a black box by AVBP, data structures 

introduced in AVBP-R1 are shared in memory with the Yales2 library and it handles remeshing 

via MMG. The adaptation cycles begin with an initial partitioned mesh with a dual cache 

blocking decomposition. The cache blocks are merged to create a single domain per process 

and then, MMG performs the mesh adaptation while freezing the parallel interfaces. 

Subsequently, interpolation and splitting are performed as well as constrained load balancing 

using METIS to ensure previous domain interfaces become interior edges for the next 

adaptation loop. This cycle repeats until the target metric is verified.   

 
Figure 19: Mesh adaptation strategy of YALES2 (courtesy of V. Moreau) 

 

To single out the desired refinement zones, AVBP provides a refinement mask to YALES2: 0 

where the current mesh is not supposed to be modified and 1 where the mesh should be refined 

and a user-defined target edge size is verified.  

For the current uses cases two physical phenomena need to be tracked by the AMR method: the 

turbulence and the flame. To handle each, a vorticity-based sensor and a flame presence sensor 

is employed.  The vorticity sensor is a threshold on the magnitude of vorticity above which the 
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metric is set to 1. Current tests suggest that a level of 1000 to 3000 is sufficient for this case. 

This is of course highly case-dependent. Secondly, to refine the flame, the flame sensor for the 

thickened flame model is used to detect the zone where the flame is located and to improve the 

corresponding resolution locally. This sensor is based on the reaction rate with a threshold 

derived from a 1D flame simulation.  

 

In the course of the project, it turned out that the CORIA-YALES2 library is not fully open 

source and its usage is currently reserved to research activities. This could limit the application 

for this workflow in future, more industrial-oriented applications. Therefore, a new open source 

library called TREEADAPT was implemented, see Fig. 20 for example. Taking advantage of 

recent improvements in mesh decomposition and load balancing in AVBP from the EU project 

EPEEC [11], CERFACS has extended the TREEPART domain decomposition library to 

feature mesh adaptation using MMG. TREEPART performs an initial domain 

decompositioning of the mesh and MMG adapts each domain while freezing parallel interfaces. 

Then, the resulting mesh is interpolated and rebalanced until the initial metric target is met. 

TREEADAPT takes advantage of the structure of TREEPART and is able to switch partitioning 

methods on the fly improving convergence of the mesh adaptation. So far, TREEADAPT has 

only been tested and used for static mesh refinement.  

  

 
 

Figure 20: Mesh adaptation of an inviscid convective vortex using TREEADAPT. 

 

TREEADAPT has been tested up to 4096 Epyc 2 AMD cores and 1.4B elements in a 

collaboration with the RockDyn PRACE project from Centrale Supelec (T. Schmitt), see Fig. 

21 for a scaling test.  It allowed to reduce mesh generation time from 3 days (using the standard 

meshing tools) to 30 minutes.  
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Figure 21: Scaling of TREEADAPT on the RockDyn BKD configuration on the IRENE AMD system.  

At present, an extension to account for periodicities and further optimisations of the code to 

reduce load balancing time is investigated.  

 

5 Test lab for emerging technologies - Task 3.4  

5.1 Emerging technologies in Nekbone  

5.1.1 Porting of Nekbone to FPGA 

The current activity aims to accelerate Nekbone on a Xilinx Alveo U280 FPGA [11], which is 

the state-of-the-art FPGA architecture. There are two potential benefits of doing this: firstly, 

power efficiency, and secondly performance. The second is important, as whilst the FPGA can 

likely not match a GPU on raw performance alone, by tuning the hardware memory access then 

potentially some of the memory bottlenecks on the CPU can be ameliorated. The Xilinx’s latest 

Vitis platform [12] is used for current work, where the code is written in C++ and then 

synthesised down to the hardware level. This builds on work done previously looking at 

advection kernels, and the work described here will be presented at international conference 

[13]. 

 
Description Performance (GFlops) % CPU performance  % theor. performance 

24 core Xeon Platinum CPU 65.74 - - 

Initial FPGA version 0.020 0.03 0.29 

Optimized for dataflow 0.28 0.43 4.06 

Optimized memory access 0.42 0.63 6.09 

Optimize matrix multiplication 12.72 19.35 20.85 

ping-pong buffering 27.78 42.26 45.54 

remove pipeline stalls 59.14 89.96 96.95 

increase to 400 Mhz 77.73 118 5.73 

 
Table 1. Steps taken to gain optimal performance for FPGA kernel.  

 

The table above illustrates the steps taken to gain optimal performance for FPGA kernel. It is 

important to note that this is a single kernel, and it is possible to include multiple kernels (see 

later in this section.) The CPU we compare against is a 24 core Xeon Platinum Cascade Lake 

(8260M) and it can be seen how there are numerous steps needed to translate the initial Von-

Neumann code to the dataflow perspective, but crucially one must undertake these steps if they 
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are going to get good performance. The dataflow approach is illustrated in the diagram reported 

in Table 1, where the kernel is split up into its constituent components and these are able to run 

concurrently. Each element consists of 4096 data points, and there was an issue with 

dependencies between the dataflow stages, causing stalling between them for a single element. 

Therefore, the approach adopted consist of dataflow pipelines decomposed into three stages, 

the middle one working on the current element, e, the previous one on the next element, e+1, 

and the next stage on the previous element, e-1. In High Level System terminology (HLS), the     

tool which takes C/C++ and synthesises this down into the Hardware Description Language 

(HDL) used to program the device, ping-pong buffers are used to store intermediate results and 

then forward them onto the next stages. This pipelines the elements themselves and increases 

the amount of concurrency, which is important as all the functionality here is laid out on the 

electronics of the chip. Furthermore, initially Xilinx’ Vitis open source scientific library is used 

and specifically their matrix multiplication implementation. However, there were numerous 

overheads here when it came to streaming and again it resulted in dataflow stages stalling. This 

was replaced with a modified, streaming matrix multiplication stage, which significantly 

improved performance – both in terms of generation of results much sooner than previously, 

and also increasing the number of floating-point operations that can occur per cycle 

(vectorisation). Lastly, the clock frequency has been increased to 400Mhz (the default is 

300Mhz); this should not be seen as a silver bullet because, without a well performing kernel 

in the first place, then a clock frequency increase might improve performance slightly, but won't 

address any underlying issues. Furthermore, an increased clock frequency impacts the overall 

complexity of the kernel, and by increasing to 400Mhz the depth of our matrix multiplication 

increased to 61 cycles. The theoretical performance, that is the percentage of theoretical 

performance achieved by a specific configuration based on the design of the algorithm, has 

been included in such analysis.  The higher this number, the closer the dataflow algorithm stages 

are to being fully occupied and running efficiently (fully optimal). Lower than this, the code is 

stalling due to inefficiencies. As new designs of the algorithm are developed, this theoretical 

performance increases and a benefit of FPGAs is the transparency about how code is physically 

executed at the electronics level. For instance, on the CPU, and to a less extent on GPUs too, 

there is a significant disconnect between the ISA (the programmer’s view) and the micro-

architecture (how it actually runs). Thus, understanding this theoretical performance is next to 

impossible on many classical architectures, whereas it is far more transparent on FPGAs. 

 

 
 

Figure 22: Dataflow used for performance’s optimization 

 

By optimizing a single kernel on the U280, only a fraction of the overall FPGA's resources is 

utilized. Therefore, there was further opportunity to increase performance by leveraging 
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multiple kernels and as each element is independent from any other element, these can be 

distributed across the kernels.  

 
Description Performance (GFlops) Energy usage (Watts) Energy Efficiency 

(GFlops/watt) 

1 core of CPU 5.38 65.16 0.08 

24 cores of CPU 65.74 176.65 0.37 

V100 GPU 407.62 173.63 2.34 

1 kernel 74.29 45.61 1.63 

2 kernels 146.94 52.47 2.80 

4 kernels 289.02 71.98 4.02 

 
Table 2: Performance and energy efficiency comparison of multiple kernels versus other technologies.  

 

Table 2 above contains a performance and energy efficiency comparison of multiple kernels 

against other technologies. The CPU is the same 24 core Xeon Platinum Cascade Lake (8260M) 

compared against previously, and running over all 24 cores resulted in an energy efficiency of 

0.37 GFLOPS/Watt. For comparison, it is included a single core CPU run, which resulted in 

5.38 GFLOPS and energy efficiency of 0.08 GFLOPS/Watt. 

 

Nekbone has mature support for GPU acceleration of the kernel via CUDA. NVIDIA Tesla 

V100 GPU has been tested, compiling with the Portland Group Compiler version 20.5-0, and 

CUDA 10.2. This resulted in 407 GFLOPS and, due to the high performance, an energy 

efficiency of 2.34 GFLOPS/Watt. The GPU's performance is impressive, although it should be 

noted that the bespoke GPU acceleration in Nekbone has been developed and tuned over many 

years and GPU generations. Table 2 also reports the performance for different numbers of our 

ax kernels on the Alveo U280 FPGA. One kernel draws 45.61 Watts (the FPGA idle with the 

bitstream loaded draws 39 Watts), and whilst the energy efficiency of 1.63 GFLOPS/Watt of a 

single kernel is significantly higher than the CPU, it is somewhat disappointing when compared 

against the GPU. However, the advantages of FPGAs start to become more apparent as the 

number of kernels is scaled. It is possible to fit up to four of our kernels on the U280, and at 

this configuration 289 GFLOPS are achieved. This over four times the performance of the 24 

core CPU, and 71% of the performance of the V100 GPU. The energy consumption of four 

kernels is 72 Watts and it can be observed that, on average, adding an extra kernel requires 

approximately an additional 7 Watts, with a performance increase close to 74 GFLOPS per 

kernel. With four kernels, the energy efficiency is over 4 GFLOPS/Watt, which is significantly 

higher than that of the GPU. We were pleasantly surprised with how well FPGA performance 

scaled as we added kernels. In part this is because the ports of each kernel connect to different 

High Bandwidth Memory (HBM) banks, so there is no contention. We found that if HBM banks 

were shared between kernels then it resulted in conflicts, excessive time in the additional hold 

fix phase of routing (over 12 hours) and reduced performance. Effectively, by keeping the 

kernels separate they can then run independently and scale better. Therefore, whilst FPGA 

considerably beat the CPU in terms of raw performance, against the GPU performance is more 

challenging to match. However, power efficiency is very important and the FPGA is way ahead 

of the CPU when it comes to this metric and almost double the power efficiency compared with 

the GPU. This is a very important aspect to highlight for future exa-scale architectures. 

 

5.1.2 Nekbone on hybrid CPU-GPU clusters 

 

Nekbone [14,15] is a proxy app for Nek5000 that illustrates important computational and 

scaling aspects of the entire solver. Nekbone solves a standard Poisson equation using a 

conjugate gradient iteration with a simple or spectral element multigrid preconditioner on a 
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block or linear geometry (parameters are set within the test directory of the simulation). 

Nekbone exposes the principal computational kernel to reveal the essential elements of the 

algorithmic architecture coupling that is pertinent to Nek5000. In particular, the evaluation of 

the Poisson operator through a tensor-product operation is the most time-consuming part of 

both Nekbone and Nek5000 [16]. The purpose of this kernel is to be able to carry out tests, 

using new and emerging architectures, without having to involve the larger suite. This work is 

based and it is a follow-up of the GPU tests reported in [17].  The Nekbone code has been the 

subject of testing on various HPC clusters up to Tier-0 class, in particular:  

 Galileo cluster (CINECA); equipped with about 1000 Intel Broadwell nodes (2x18-

core Intel Xeon ES-2697 at 2.30 GHz), and OmniPath interconnection. 

 Marconi A3 partition (CINECA): It is a Lenovo NeXtScale platform. A3 partition 

features Intel Xeon Skylake (SKL) processors. 

 Marconi 100 (CINECA): it is based on 980 nodes; each node is equipped with 2x16 

cores IBM POWER9 AC922 processors and with 4 NVIDIAV100 GPUs connected 

with a high-speed internal network Mellanox Infiniband EDR DragonFly+. 

 ARMIDA (E4): 8 Marvell TX2 compute node (per node: 64 cores Marvell 

TX2@2,2/2.5 GHz, 256 GB RAM) Mellanox IB 100Gb EDR, Nvidia Tesla V100-PCIE 

32GB).  

 

Nekbone has run with 100 CG (Conjugate Gradient) iterations, polynomial degree 9 and for 10 

GLL points in each dimension. The reference test is “example2” from the official repository 

[18]. It will run without the multigrid preconditioner and without user-provided decompositions 

of the processor counts and the elements. Tests with V100 GPUs report different GPU 

programming models (OpenAAC, CUDA Fortran, CUDA shared memory, CUDA Fortran 

optimized). Figure 23 shows the weak scaling, by keeping constant the number of elements per 

core (128). Using a patch about MPI tag, Nekbone ran well over 152,160 cores on Marconi A3, 

with a peak performance of 35,9 Teraflop/s, using OpenMPI (3.0). 

 
Figure 23 Weak scaling of Nekbone on different architectures, only cpus; semi-log y scale 
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Figure 24: Kernel and communication time using Marconi A3.  

 

Figure 24 shows the kernel and communication time (using Intel APS). It is clearly reported 

the MPI boundness of Nekbone by increasing the number of processes using Marconi A3. 

Nekbone has three different GPU porting’s flavour: i) OpenACC ii) OpenACC + Cuda Fortran 

(PGi compiler only) iii) OpenACC + CUDAC. All versions use 1 MPI process per GPU model, 

so the maximum number of usable MPI processes is four per node. The protocol 1 MPI-N GPU 

model is not supported. All three versions were intensively tested. 

 

 
 

Figures 25: Strong (left) and weak (rigth) scaling of Nekbone on M100 GPU cluster, semi-log y scale. 

 

Initially, for the MultiGPU mode, the performance turned out to be very poor, even two orders 

of magnitude less than the single GPU one. This performance was due to incorrect MPI-GPU 

mapping during the execution on Marconi100. In fact, the code relies on external directives for 

mapping. By making small changes to the code (adding the cudaSetDevice), the mapping now 

takes place directly from the source code, without the need to know the configurations of the 

environment. By doing so, performance around petaflops (1 PFlop= 1000 TFlops) is achieved. 

Strong Scaling on Gpus shows in Figure 25 (top) the best performance using OpenACC + 

CudaFortran. For this activity, the relevant figure is the weak scaling on the full machine. Weak 

scaling of Fig.  25 (bottom) shows the weak scaling of two different set-ups: the pure OpenACC 

version (blue line) has a polynomial of order 15 with 1024 elems/GPU, whereas the CUDAC 

one (red line) has fewer degree (nx=10) but more elements (3584 elems/GPU). Therefore, the 

first case is more computationally intensive. The best performance has been achieved recently 

with 835 TeraFlop/s in OpenACC configuration, out of a total of 3792 GPUs.  We should stress 

that the comparison is not fair when comparing cases using different nx. We want to compare 

the “best run” for each configuration that it is possible to run. This has been reached thanks to 
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the new GPU Nvidia driver (v 440.64.00) with cuda v.10 and fine tuning of the kernel. These 

results, is as far as we know, the best peak performance achieved by Nekbone into HPC cluster; 

it overcomes the results reported in Fig. 5 of [17], by running the same test-case on similar 

architecture (Titan with V100 GPus configuration used in ref [16]).  

5.2 Emerging technologies in AVBP 

5.2.1 Porting to GPUs 

In the first year, AVBP was heavily modified to account for a dynamic mesh structure required 

for AMR.  Using the experience on a first GPU port, we have ported again the code with this 

new version and released version 7.7 (Sept. 2020).  The directive-based language OpenACC 

was used to ensure a portable and maintainable source code. AVBP 7.7 supports GPU usage 

for standard combustion cases with basic boundary conditions. Since, we have continued the 

port and are currently working on supporting the workflow for use case C3U2.  

 

Meanwhile, performance tests have been carried out in the PIZ DAINT system as show in figure 

26. These tests were performed using use case C3U1 with a static mesh. Scalability up to 32 

GPUs is excellent. However, they revealed a very strong dependency of time to solution on the 

cache block size. Indeed, AVBP had been optimized originally for scalar processors and uses 

cache blocking to improve performance on standard architectures. This feature in return hinders 

performance on GPU accelerators. In our case the bigger the cache block, the best the 

performance on GPU.  

 
Figure 26. Strong scaling performance using use case C3U1 (static mesh) on the CSCS Piz Daint system 

(left) and on the FULHAME system (right).  

 

Currently the GPU workflow is being extended to support C3U2 by accelerating Wall Law 

boundary conditions as well as a new combustion model and a new diffusion operator.  

Additional tests are being performed on V100 system (CTE POWER at BSC and JEANZAY 

at IDRIS).  

5.2.2 Porting to ARM based architectures 

Another target architecture for AVBP is ARM. The success of the A64FX architecture foretells 

a plethora of ARM equipped processors for 2021 as well as the European Processor Initiative 

which has chosen ARM as one of the alternative designs for a European processor.  

During the last period AVBP has been ported to three ARM systems:   

– INTI: thunderx2 system from the GENCI (Tier 0-Tier 1 French coordinator). 

– FULHAME: thunderx2 system from EPCC. 

– hi16164: huwai processor (early silicon) from EPI at JSC.  
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Porting to this architecture was mostly straightforward as the code already support GNU 

compilers natively and the ARM compiler is mostly based on clang.   

 

 
 

Figure 27: Gprof results for a simple combustion simulation on a single node versus architecture.  

 

Figure 27 highlights the comparative performance results versus AMD and Intel processors. 

Details on frequency were not available for all systems.  This suggest the competitiveness of 

the ThunderX2 architecture since performance is comparable while not supporting any 

vectorisation. However, the Hi1616 early silicon seems to be behind in performance. This might 

be due to the lack of compiler optimisations for this architecture or defaults on the early silicon. 

Strong scaling on the FULHAME system is reported on the right hand-side of Fig. 26.  These 

are early tests performed on a new system but they already show a good scaling on the 

architecture. Some artefact can be seen (for example using 8 nodes), they have been identified 

as early system issues not related with the code or the architecture. During the next period it is 

expected to have access to a64fx architectures to see the benefits from vectorisation on the 

ARM architecture.   

5.3 Emerging technologies in Alya 

In the first year of EXCELLERAT project, Alya's matrix assembly phase has been ported to 

GPUs using OpenACC. The matrix assembly alternates with the linear solver on each time step 

of a simulation. We presented some tests carried out on the POWER9 cluster at BSC, composed 

of nodes with 4 NVIDIA Volta V100 GPUs and 2 POWER9 8335 CPUs (40 cores in total). For 

the numerical experiments, we used the flow around a full airplane case (U1C2). Roughly 

speaking, we observed that, in terms of performance, a single GPU performance is equivalent 

to the 2 CPUs. Therefore, as the load of running with CPUs is not negligible, we developed a 

co-execution strategy to simultaneously use both the CPU and the GPU. The 20% performance 

boost achieved was coherent with the ratio of the performance of the two devices. 

 

The directives-based language, OpenACC, is our choice for the GPU because it is easy to 

implement, and the resulting code is readable for the developer. The matrix assembly phase is 

where the equations are discretized, and this is a part of the code that is maintained and 

developed by application scientists. Using a low-level language, such as CUDA, should 

improve the performance but pose difficulties in maintaining and further developing the code. 

This situation is not the same in other parts of the code. For instance, application scientists 

generally use the linear solver as a black box, so it does not require the same readability level. 

Consequently, for the linear solver, we use accelerated libraries based on CUDA. 

 

In this second year of the project, we have carried out a study to measure the performance that 

could be achieved by i) using CUDA instead of OpenACC and ii) creating specific kernels for 

each type of mesh element - extending both the length and complexity of the code. In the left 

hand-side of Fig. 28 some numerical experiments carried out at the CTE POWER9 cluster for 

the flow around airplane case (U1C2) are reported. For the three types of elements evaluated 
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(tetrahedral, pyramids and hexahedra), the OpenACC generic kernel's elapsed time is about 

twice of the specific kernel implemented in CUDA. In the right-hand side of Figure 29, the 

same analysis has been carried out for the basic kernels algebraic of the linear solver: SpMV, 

AXPY and DOT. In this case the language has been changed, but the kernel has not been 

restructured as in the assembly. For the vector operations (AXPY and DOT) the performance 

obtained is almost the same, while a slowdown of 15% is observed for the SpMV with the 

OpenACC implementation. This study provides a sort of ideal performance reference for the 

GPU version of the matrix assembly. The next steps will be to analyse the trade-off between 

maximal performance versus software maintenance and development considerations. 

Nevertheless, having established a reference will allow to quantify the potential benefits of the 

corresponding developments.  

 
Figure 28. Elapsed time (microsec) of the matrix assembly   for different element types (left) and basic 

linear algebra solver kernels for OpenACC and CUDA implementations (right). 

6 Validation and benchmarking suites - Task 3.5 
In order to quantify and evaluate the progress and evolution of the codes after the technical 

developments made in WP3, some benchmarks were defined for each code. This will permit to 

monitor the progress of the codes throughout the life of the project and evaluate the performance 

of the codes respect to the starting day. These benchmark cases are not expected to be as the 

use-cases of WP2, but they are defined in order to expose the bottlenecks of the codes when 

running the reference applications in WP2. The different cases and activities involved in the 

execution of these benchmarks are given below: 

 

Partner BSC 

Code Alya 

Test case JAXA high-lift configuration Standard Model 

Linked use-case C2U2 – External aerodynamics 

Requirements (WP2) Alya-R2: Dynamic load balancing 

Alya-R5: Portability to emerging technologies. 

Objective Co-execution on heterogeneous architectures 

Short Description A dynamic load balancing strategy was applied to efficiently run 

full aircraft simulations in the POWER9 heterogeneous architecture 

with NVIDIA V100 accelerators for medium-size meshes of the 

order of ~200 million elements. A parallelization strategy was 

implemented to fully exploit the different levels of parallelism, 

together with a novel co-execution method for the efficient 

utilization of heterogeneous CPU/GPU architectures.  
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Activities Description Starting date End date 

A1 Porting assembly phase 

to GPU 

November 2018 May 2019 

A2 GPU speedup analysis March 2019 April 2019 

A3 Load balancing for co-

execution 

June 2019 December 2019 

A4 Load-balancing analysis September 2019 January 2020 

 

 

KPIs April 20191 January 20201 … 

SP of the accelerated vs. 

non accelerated assembly  

3.48x - - 

LB achieved with co-

execution in P9 system 

- 96%  

TS reduction achieved with 

co-execution vs. GPU only 

version in P9 system  

- 23%  

 

Table 3. Benchmark suite Alya. 

 

 

Partner CERFACS 

Code AVBP 

Test case 2D flame propagation  

Linked use-case C3U1 – Safety application  

Requirements (WP2) AVBP-R1: Dynamic mesh structure 

AVBP-R4 : efficient remeshing 

AVBP-R5: remeshing criteria 

Objective Parallel Dynamic mesh refinement  

Short Description A parallel remeshing strategy has been applied to a 2D flame 

propagation case derived from C3U1 to evaluate the potential 

acceleration of AMR and study remeshing criteria strategies 

 

 

Activities Description Starting date End date 

A1 Dynamic mesh structure November 2018 Jan 2020 

A2 Remeshing criteria for 

2D  

Jan 2020 Dec 2020 

 

KPIs April 20192 January 20202 … 

SP of the adapted case 

compared to the resolved 

- 2x - 

TS reduction achieved with 

co-execution vs. GPU only 

version in P9 system  

- 3%  

 

Table 4. Benchmark suite AVBP. 

                                                 
1 Respect to baseline condition 
2 Respect to baseline condition 
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Partner KTH 

Code Nek5000 

Test case AMR simulation of flow over NACA0012 aerofoil with 3D wing 

tip 

Linked use-case C1U1 – Wing with 3D wing tip 

Requirements (WP2) Nek5000-R3: Efficient strategies for hex-based meshing of 

complex geometries 

Nek5000-R4: Proper scheme for element’s geometry description 

and projection of grid points on defined surface 

Nek5000-R5: High quality mesh partitioner based on graph 

bisection 

Nek5000-R10: Implementation and testing of UQ tools in Nek5000 

Objective Pre-processing stage: building hex-based coarse mesh for 

moderately complex geometries 

Code initialisation: testing initial AMR pipeline focusing on 

geometrical mesh consistency 

Short Description Performing AMR simulation starts with creating very coarse mesh, 

that would be later refined in the region with significant 

computational error. For hex-based meshes with complex 

geometries this is a challenging task. During a run the mesh is 

dynamically modified by adding/removing computational 

subdomains (elements) keeping external domain surfaces 

unchanged. This requires additional geometry correction step based 

on 3D projection.   

 

 

 

Activities Description Starting date End date 

A1 3D projection routines for NACA0012 profile 

with rounded wing tip 

Mar 2019 Apr 2019 

A2 Coarse mesh of NACA0012 profile with 

rounded wing tip 

Apr 2019 May 2019 

A3 Initial refinement on wing surface (without use 

of error indicator) 

May 2019 Sep 2019 

A4 Full AMR run (including spectral error 

indicator) with v19 Nek5000 version 

Sep 2019 Apr 2020 

A5 Testing different refining strategies for h-type 

AMR 

Apr 2020  

A6 UQ tools in Ne5000  May  202  

A5 Testing different partitioning tools (ParMETIS, 

PARRSB [19], TREEPART) and strategies for 

relatively complex meshes 

Sep 2020  
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KPIs3 Baseline May 2019 Oct 2020 … 

USR/USR Coarse mesh 

generation with 

Nek5000 specific 

tools (to be 

computed) 

Achieved   

LB Two -level graph 

partitioning using 

ParMETIS (to be 

computed) 

 Testing and 

comparison of 

ParMetis and 

PARRSB on 

relatively big and 

complex meshes 

 

 

Table 5. Benchmark suite Nek5000 - 1. 

 

Partner KTH 

Code Nek5000 

Test case AMR simulation of flow over 3D periodic hill 

Linked use-case C1U1 – Wing with 3D wing tip 

Requirements (WP2) Nek5000-R5: High quality mesh partitioner based on graph 

bisection 

Nek5000-R6: Efficient pressure preconditioner for non-

conforming, deformed elements 

Objective Code initialisation: testing mesh partitioning using graph bisection; 

testing initialisation of the coarse-grid solver for deformed elements 

Code executions:  monitoring pressure iteration count for different 

element aspect ratio. 

Short Description A key aspect of the performance of the incompressible flow solver 

is efficient solution of pressure problem, as divergence-free 

constraint is a man source of stiffness in the set of equations. In this 

test we focus on the main performance issues e.g. work balance and 

efficient pressure preconditioner. 

 

Activities Description Starting date End date 

A1 Merging/adapting existing AMR branch with 

official Nek5000 repository (v19) 

May 2019 Feb 2020 

A2 Testing different partitioning tools (ParMETIS, 

PARRSB) and strategies 

May 2020 Oct 2020 

A3 Improved pressure preconditioners for non-

conformal meshes using AMG 

Oct 2020  

A4 Improved pressure preconditioners for non-

conformal meshes with deformed elements 

(two-level Schwarz and Schwarz-multigrid 

Oct 2020  

A5 Refactoring of communication kernels Sep 2020  

 

 

                                                 
3 KPI’s need to be previously defined in “KPIs_Benchmark_Suite.docx” 
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KPIs4 Baseline Oct 2020  Status (Date)  … 

LB Two -level graph 

partitioning using 

ParMETIS (to be 

computed) 

PARRSB: adjusted 

to AMR branch 

and tested on small 

simple meshes 

  

CompE Pressure 

preconditioner 

based on additive 

Schwarz and XXT 

(to be computed) 

Implementation of 

simplified 

communication 

kernel for local 

solver in Schwarz 

preconditioner   

  

 

Table 6. Benchmark suite Nek5000 - 2. 

 

7 Data dispatching through data transfer - Task 3.6. 
Like in the previous deliverables, SSC is combining their two work package efforts “Data 

dispatching through data transfer” from Work Package 3 and “Data Management” from Work 

Package 4 into one deliverable, which also fits to their motivation in combining data transfer 

and data management into their newly designed data exchange platform. The detailed 

contribution can be found in deliverable D4.6. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 KPI’s need to be previously defined in “KPIs_Benchmark_Suite.docx” 
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8 Conclusions 
As a conclusion, the progress on the development of Exascale enabling technologies on the 

EXCELLERAT core codes for the second year of the project has been presented. While in Year 

1 most of the work was dedicated to node-level and system-level performance optimizations, 

this year substantial effort was dedicated to AMR and emerging technologies. The activities 

carried out by the partners on these tasks have been focused on porting to GPUs, use of the new 

vectorial architecture SX-Aurora from NEC and testing the memory features of the modern 

AMR Epyc 2. Finally, aspects related to intra-node parallelization, such as load balancing and 

OpenMP threading optimizations, have been considered. At the system level, the focus has been 

the strong scaling and optimizing the communication kernels. Additional focus has been given 

to improving the strong scaling of the codes and designing and implementing new distributed 

memory load balancing strategies. A benchmark suite to test and monitor the evolution of the 

codes was developed and it is fully operational. The data transfer and dispatching strategy has 

been extended outside the project consortium to the medical sector. Meshing activities have 

made a good progress and AMR has been tested and demonstrated on some use-cases for AVBP 

along with the in-house implementation using the TREE PART domain decomposition library. 

The developments presented here along with the demonstrators based on the use-cases 

described in D2.3 evidence a clear progress to bringing the engineering world closer to exascale. 

These activities are the central part of the technical core of EXCELLERAT and intimately 

connected to the applications in WP2 and the services in WP4. These advances in HPC 

algorithms and computational methodologies are the building blocks not only for the use-cases 

described in EXCELLERAT, but also beyond and could be applied to other applications of the 

engineering realm. These advances in HPC technologies for Exascale are part of the expertise 

of the EXCELLERAT consortium and are ultimately defined as services that EXCELLERAT 

can deliver to the engineering community. This WP has contributed with the following services 

to the EXCELLERAT services portfolio, further details are given on the EXCELLERAT 

website [20]: 

 Co-Design Engineering Software- and System-Design.  

 Data management for large scale simulation result and input data.  

 Efficient and modern implementation of Exascale ready engineering software.  

 Efficient execution of large-scale engineering simulation workflows. 

 Holistic Testing and Validation for the Engineering Workflow.  

 Meshing and re-meshing techniques, methodologies and Software. 

 Modelling of Engineering Problems. 

 Numerical Solution methods for Engineering Problems. 

 Performance Engineering for the Complete Large-Scale Engineering Workflow. 

 Strategies for Load-Balancing and Data-distribution.  
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