

H2020-INFRAEDI -2018-2020

The European Centre of Excellence for Engineering
Applications

Project Number: 823691

D4.6

Report on Enhanced Services Progress

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 2 of 58

The EXCELLERAT project has received funding from the European

Unionôs Horizon 2020 research and innovation programme under grant

agreement No 823691

Workpackage: 4 Enhanced services

Author(s): Niclas Jansson KTH

 Gavin Pringle UEDIN

 Dennis Grieger USTUT

 Christian Gscheidle Fraunhofer

 Janik Schüssler SSC

Approved by Executive Centre Management

Reviewer Claudio Arlandini CINECA

Reviewer Maike Gilliot TERATEC

Dissemination

Level
PU

Date Author Comments Version Status

2020-10-27 N. Jansson et al. Initial contributions V0.1 Draft

2020-10-31 N. Jansson et al. Draft ready for QA V0.2 Draft

2020-11-20 N. Jansson et al. Updates from first QA round V0.3 Draft

2020-11-27 N. Jansson et al. Updates from second QA round V0.4 Draft

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 3 of 58

List of abbreviations

3D Three-dimensional

AMR Adaptive Mesh Refinement

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AVX Advanced Vector Extensions

CoE Centre of Excellence

CFD Computational Fluid Dynamics

CRM Common Research Model

CUDA Compute Unified Device Architecture

DMD Dynamic Mode Decomposition

EPI European Processor Initiative

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GLL Gauss Lobatto Legendre

GPR Gaussian Process Regression

HDF5 Hierarchical Data Format 5

HIP Heterogeneous-compute Interface for Portability

HPC High-Performance Computing

ISA Instruction Set Architecture

I/O Input/Output

JOSS Journal of Open-Source Software

MKL Math Kernel Library

ML Machine Learning

MPI Message Passing Interface

MPMD Multiple-Program, Multiple-Data

NetCDF Network Common Data Form

OpenACC Open Accelerators

OpenMP Open Multi-Processing

PAPI Performance Application Programming Interface

PCA Principal Component Analysis

PCE Polynomial Chaos Expansion

PETSc Portable, Extensible Toolkit for Scientific Computation

POD Proper Orthogonal Decomposition

PVC Precessing Vortex Core

QoI Quantity of Interest

RANS Reynolds-averaged Navier-Stokes equations

SENSEI Scalable in situ analysis and visualization

Sr Strouhal Number

SHM Shared Memory

SPMD Single-Program, Multiple-Data

SVD Singular Value Decomposition

TCP Transmission Control Protocol

TGCC Très Grand Centre de calcul du CEA

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 4 of 58

UI User Interface

UQ Uncertainty Quantification

V&V Validation & Verification

VTK The Visualization Toolkit

XDMF eXtensible Data Model and Format

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 5 of 58

Executive Summary

This deliverable reports on the progress and significant achievements in work package 4 of the

EXCELLERAT project. The work package deals with the development of EXCELLERAT's

enhanced services; co-design, visualization, data analytics and management, in essence

developing tools for an application's entire lifecycle.

The significant achievement in this reporting period has been to formulate prototypes of the

enhanced services outlined in deliverable D4.2; scalable in-situ visualization workflows for

both interactive and non-interactive analysis, in-situ data analytics and uncertainty

quantification frameworks and a newly designed platform for HPC specific transfer and data

management. These services have been developed and implemented based on use-caseôs needs,

either using derived model problems or scaled-down formulations of the full use-cases.

The plans for the remainder of the project are to continue developing the enhanced services,

advanced past, current prototypes and focus on the integration of the development into the full

use-cases in EXCELLERAT.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 6 of 58

Table of Contents

1 Introduction .. 11

2 Task 4.1: Co-design .. 11

2.1.1 Cutting edge hardware employed to date ... 12

2.2 Alya/BSC ... 13

2.3 AVBP/CERFACS .. 15

2.4 CODA/DLR ... 17

2.5 Nekbone (Nek5000)/CINECA,KTH,UEDIN .. 18

2.5.1 FPGA at EPCC ... 18

2.5.2 HPC architectures at CINECA and E4 ... 19

2.5.3 SX-Aurora at HLRS (KTH) ... 21

2.6 ScaLAPACK/RWTH ... 21

2.7 Summary of Co-Design Activity.. 22

3 Task 4.2: Visualization ... 23

3.1 Interactive in-situ visualization with Vistle ... 23

3.1.1 LibSim interface for Vistle ... 24

3.1.2 Vistle post-processing backend for SENSEI .. 24

3.2 In-situ visualization with PAAKAT ... 25

3.2.1 MPMD-VTK example .. 25

3.3 Summary of Visualization Activities ... 28

4 Task 4.3: Data analytics ... 29

4.1 In-Situ Data Analytics .. 29

4.1.1 Software Architecture .. 29

4.1.2 Applications ... 30

4.2 Uncertainty Quantification ... 31

4.3 Calculation of Modal Decompositions ... 33

4.4 Post-Processing TPLS Simulations .. 34

4.5 Summary of Data Analytics Activities ... 36

5 Task 4.4: Data management ... 38

5.1 Introduction .. 38

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 7 of 58

5.2 Challenges regarding Exascale ... 38

5.3 Solution .. 39

5.4 Introduction of the platform interface .. 39

5.5 Development Progress .. 43

5.6 TPLS I/O for exascale platform ... 43

5.7 Summary of Data Management Activities ... 44

6 Task 4.5: Usability ... 45

7 Conclusion .. 46

8 References .. 47

9 Appendix .. 50

9.1 Rough Guide to Preparing Software for Exascale ... 50

9.1.1 Software preparations ... 50

9.1.2 Improve serial code .. 51

9.1.3 Introduce vector processing ... 51

9.1.4 Improve MPI code .. 52

9.1.5 Improve MPI parallelism ... 53

9.1.6 Introduce OpenMP for threads on cores and OpenACC for GPUs 54

9.1.7 Improve OpenMP parallelism .. 54

9.1.8 General programming tips .. 55

9.1.9 Code Longevity .. 55

9.2 Using Vistleôs in situ capabilities ... 56

9.2.1 For LibSim instrumented simulations .. 56

9.2.2 For SENSEI instrumented simulations .. 58

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 8 of 58

Table of Figures

Figure 1: Profile of Alya running on a FPGA. ... 15

Figure 2: AVBP strong scaling on IRENE, for explosion and a turbulent simulations. 16

Figure 3: Nekbone weak scaling on various CPU clusters. ... 20

Figure 4: Weak scaling of Nekbone on Marconi100. .. 20

Figure 5: Performance of Nekbone running on three different hardware architectures. 21

Figure 6: Connected LibSimController-module. ... 24

Figure 7: Compiler options for modified ParaView 5.6. .. 25

Figure 8: Parallel programming models. (a) Single-Program, Multiple-Data (SPMD) or in-line

visualization. (b) Multiple-Program, Multiple-Data (MPMD) or in-transit visualization

[27]. .. 26

Figure 9: Source mesh (blue and grey) of 4.67e6 cells and volume of 4.43x4.09x0.22 ÃÍσ.
Destination mesh (red) of 1.25e5 cells and volume of 0.05x0.05x0.05 ÃÍσ. 27

Figure 10: MPMD execution model of source code and destination code through n1 + n2

processors p. ... 27

Figure 11: Software architecture for in-situ data analysis [30]. ... 29

Figure 12: Mean velocity field with corresponding 95% CI. ... 30

Figure 13: Distribution of the pressure coefficient over the ellipse boundary. The diameter of

the ellipse is assumed to be uncertain. Using a set of training simulations, the pressure

coefficient for an unseen geometry is predicted and compared to the true simulated data.

 .. 32

Figure 14: DMD analysis performed on the flow field of a turbulent flame. (a) Instantaneous

flow field, (b) Spectrum of the DMD, (c) Reconstruction of the dominant DMD-mode. 34

Figure 15: Client/Server structure. ... 34

Figure 16: Two images created by the two Matlab post-processing routines. 35

Figure 17: Data Roundtrip. ... 38

Figure 18: Connection to an HPC cluster... 40

Figure 19: Project creation. .. 40

Figure 20: Uploading an input deck. .. 41

Figure 21: Workspace structure on HPC filesystem. ... 41

Figure 22: Example of an excellerat.yaml file ... 42

Figure 23: Workflow scheduling. ... 42

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 9 of 58

Figure 24: Workflow overview. ... 43

Figure 25: Schematical data exchange between a LibSim-instrumented simulation and Vistle in

multi-process mode .. 57

Figure 26: Schematical data exchange between a LibSim-instrumented simulation and Vistle in

single-process mode ... 57

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 10 of 58

Table of Tables

Table 1: Performance and energy efficiency comparison of FPGA kernels [16]. 18

Table 2: Environment variables needed to run simulations in-situ with Vistle 58

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 11 of 58

1 Introduction
This document reports on the progress and significant achievements in work package 4 of the

EXCELLERAT project. The work package deals with EXCELLERATôs enhanced services;

co-design, visualization, data analytics and management, in essence developing tools for an

applicationôs entire lifecycle.

As described in deliverable D4.2 Report on the Service Portfolio, tools and methods developed

within this work package are derived based on the common needs of EXCELLERATôs use-

cases for solving engineering simulations at scale, as outlined in their so-called user-stories.

Given the diversity of EXCELLERATôs core-codes, particular focus is laid on formulating

services which are both code- and application-agnostic, enabling reuse and integration into

several of the core-codes. Marketable services developed in this work package will be identified

by work package 1 for inclusion in EXCELLERAT's service portfolio.

The deliverable is structured as a progress report. Each task in work package 4 give details of

the work done, and progress towards realising the envisioned services outlined in deliverable

D4.2 and outline future work for the remainder of the project.

2 Task 4.1: Co-design
EXCELLERAT follows an indirect co-design paradigm, wherein Core Partners gain access to

the early release of state-of-the-art hardware, where this hardware is available typically due to

a close working relationship between the vendor and the Core Partner. This avoids a direct co-

design paradigm, as vendors typically will not alter their hardware to benefit a small set of

applications. This indirect co-design paradigm permits EXCELLERAT to exploit trends in

software and hardware and match them to the code design issues of our Reference Applications

running our use cases.

The co-design working group agreed a methodology:

¶ Firstly, target Reference Applications are chosen.

¶ Full applications may be reduced to mini-apps,

o where each mini-app is a small bundle of highly portable source code, with

example input and output files,

o which retains the computational characteristics of the full simulation, e.g.,

computational kernels are retained

Á perhaps key data movements epochs, such as I/O, are retained.

o This can circumvent irrelevant issues that can arise when porting to novel

architectures.

¶ The full code, or mini-app, is then ported to existing hardware or emulators,

o associated libraries may also need to be installed

¶ Target simulation is also provided

o ported code is optimised if time permits

¶ Initial profiling is then performed to locate kernels of interest,

¶ Profiling and performance are measured

o using emerging libraries where possible,

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 12 of 58

¶ Code adaptations and/or improvements are investigated and reported back to owners.

We have created and managed a Co-Design Working Group, which monitors all co-design

activities. These activities occur across many other Tasks, specifically,

¶ T3.1: Node-level performance optimisation,

¶ T3.2: System-level performance towards exascale,

¶ T3.4: Test lab for emerging technologies,

¶ T3.5: Validation and benchmarking suites,

¶ T4.1: Co-design,

¶ T4.3: Data analytics,

¶ T5.5: HPC service provisioning,

where T4.3 provides key linear algebra routines to test alongside our Reference Applications.

T3.4 helps locate and document emerging technologies, T5.5 provides access to cutting edge

platforms or emulators of future platforms, and T3.5 helps to determine bottleneck kernels via

profiling the reference applications. T3.1 and T3.2 perform the node-level/accelerator tests.

Lastly, it should be noted that we outsource required effort through our ongoing collaborations

with the POP CoE [1].

During the last year, the target Reference Application codes involved in co-design have been

identified as Alya, AVBP, CODA, Nekbone (Nek5000), and a particular dense linear algebra

SVD solver from ScaLAPACK, namely pdgesvd, as this is the key routine employed by the

DMD method, described in Task 4.3 Data Analytics (see Section 4.3).

Our living document started life as a Word document in our BSCW, but this enforced a

debilitating single-editor bottleneck, thus the document was moved to our Wiki, which permits

multiple concurrent editors.

As planned, as part of our living document, we have a Section containing a crib-sheet for

authors to prepare their codes for exascale, for portable optimisations that are not tied to any

particular hardware. This was produced, in collaboration with another CoE, namely

CompBioMed [2], and is included in both the live working group document on our Wiki and in

the Appendix of this deliverable (see Section 9.1).

Finally, we had planned to organise a joint Birds of a feather (BoF) session with ETP4HPC [3]

at ISCô20; however, this was postponed due to Covid-19. It is planned to hold this BoF session

at ISCô21 or a virtual workshop in 2021.

The remainder of this Section describes the novel hardware currently employed by the co-

design working group, along with a high-level overview of the status of each of the participating

Reference Applications.

2.1.1 Cutting edge hardware employed to date

A full list of current hardware available to the CoE and is maintained by Task5.5 is available

in the wiki. Regarding co-design, the hardware involved to date are as follows:

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 13 of 58

Á AMD

Á AMD EPYC cluster at TGCC (Très Grand Centre de calcul du CEA) [4].

Á AMD CPU and GPU clusters at DLR

Á ARM

Á ARM Cavium ThunderX2 cluster from HPE at EPCC [5].

Á ARM Marvell ThunderX2 and Nvidia Tesla GPUs, ARMIDA, from EPI at E4

[6].

Á ARM thunderx2 cluster at TGCC (Très Grand Centre de calcul du CEA) [4].

Á HPE SGI

Á GPU cluster, JEANZAY system at IDRIS [7].

Á Huawei

Á Huawei ñhi 6474 early siliconò cluster, JUAWEI, from EPI at Jülich

Supercomputing Centre.

Á IBM

Á Power9 plus NVIDIA Volta GPUs, Marconi100, at CINECA [8].

Á Power9 + GPUs Cluster, CTE, at BSC [9].

Á Intel

Á Intel CPU cluster, Galileo, at CINECA [10].

Á Lenovo NeXtScale platform, featuring Intel Xeon Skylake (SKL) processors,

Marconi A3 partition, at CINECA [11].

Á NEC

Á SX-Aurora Vector Machine at HLRS [12].

Á Xilinx

Á Xilinxôs Alveo U280 FPGA cluster at EPCC [13].

2.2 Alya/BSC

In this second year we have focused in comparing the OpenACC and CUDA implementations

to measure the additional performance that is available by using a lower level implementation

strategy. These experiments have been carried out on tailored mini-apps generated to reproduce

the assembly and linear solver phases of the time-integration.

Despite the better performance obtained with the low-level optimal kernels, those are not our

preferred option because they complicate the maintenance and further development of the code,

especially on the parts of the code related with discretization and modelling methods, such as

turbulence models, which are maintained by application scientists rather than computer

scientist. Nonetheless, this study provides us a sort of ideal performance reference for the GPU

version of the code.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 14 of 58

POWER 9 + NVIDIA V 100 cluster

We tested our new min-app on the POWER9 CTE cluster of the Barcelona Supercomputing

Center. This platform has an architecture similar to the Summit supercomputer, but with 4

GPUs instead of 6 GPUs per node. For the mini-app related with the assembly phase, the

benefits of the low-level implementation were not only caused by a better tuning of the

implementation but also an element-specific implementation. As a consequence, speedups of

up to 2x were obtained. For the algebraic solver, the element-specific factor was not present, so

the low-level implementation outperforms the directives-based approach only by 15%.

For more information on this work, and others outlined below, please see D3.2 Report on Exa-

Enabling Enhancements and Benchmarks, and the Section on T3.4 Test Lab for Emerging

Technologies.

Plans for the next 12 months

- Test Alya on new pre-exascale EuroHPC architectures

- Test Alya on novel ARM CPUs

Alya on FPGAs

We are currently working on porting Alya to FPGAs and as an initial step have performed some

focussed experimentation. This has enabled us not only to identify the most time intensive

kernel of the code, but furthermore to understand whether it is likely to be of benefit on the

FPGA or not.

We found that the nsi_element_operations_fast kernel accounts for around 78% of the runtime

with one of the standard test-cases which models a sphere and contains 16 million elements.

This kernel is called for every single element, and constructs the matrix of equations that will

then be solved. Whilst the individual executions of the functions are quick, the fact that it is

executed so frequently accounts for such a significant runtime (around 90 seconds for every

element which is performed twice per timestep). We profiled this using the PAPI library and a

tool to interpret these results that has been developed as part of EXCELLERAT, which

performs analysis on the performance counters and generates a focussed report of metrics that

are important to HPC codes, and the summary is illustrated in Figure 1.

This profile is for the specific, nsi_element_operations_fast, subroutine and it is telling us that

on average the routine is providing 1.54 GFLOP/s performance, which is very low, with the

CPU Floating Point Units (FPUs) at less than 50% occupancy. Furthermore, the CPU is stalling

for over 10% of the time (doing no work) and most of this (7.6% of all cycles) are due to

memory stalls where the CPU has to wait for data to be made available. Furthermore, there is

an imbalance of instructions, where for every floating-point calculation there are approximately

two data reads. Whilst it is still fairly early on this work, we believe that this summary means

that there is potential here for FPGA acceleration, whereby reworking the kernel as a dataflow

algorithm we can significantly improve the FPU occupancy and reduce the number of overall

stalls. We can also significantly increase the amount of floating-point capability, and it can be

seen that currently the CPU is not vectorising these properly (only one single floating-point

operation per FPU per cycle, rather than the 8 that it is theoretically capable of.) There are a

number of dependency issues within the algorithm that need to be addressed to port onto the

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 15 of 58

FPGA.- This is our current area of focus, and from this early study we think it is fairly likely

that the technology will show some benefit.

2.3 AVBP/CERFACS

The original ABVP mini-app was based on the initial use cases of this CoE. However, to

account for the dynamic mesh adaptation structure, since the beginning of project 80% of the

source code of ABVP was rewritten. Hence, the original mini-app no longer reflects the main

code and can no longer be used.

Total number of calls: 30 (30 profiled) and 1 dynamic memory allocations

Number of counter updates: 30 (30 possible, 100.0%)

Total execution time 2108.94 seconds, total number of billion cycles 7767.21

89.08% of cycles issued uop for execution, 77.58% cycles retired a uop

Average MIPs of 11147.56 and 0.0 single MFLOP/s and 1540.12 double MFLOP/s

 Total number of single precision MFLOP: 0.0 (N/A% 256B, N/A% 128B, N/A% scalar)

 Total number of double precision MFLOP: 3248029.72 (0.0% 256B, 0.0% 128B, 100.0% scalar)

 FPU occupancy: 41.82%

Total data read from DRAM 230829.58 MB, with 80480.12 MB on L3 miss

 Memory load operations that hit in L1: 99.61% and 0.19% missed

 Memory load operations that hit in L2: 0.15% and 0.04% missed

 Memory load operations that hit in L3: 0.02% and 0.02% missed

 Memory load operations that hit in FB: 0.22% and 0.02% went to DRAM

 Prefetcher performance:

 Hit in L2 cache 66.57%

 Missed in L2 cache 33.43%

 Evicted without being used (useless) 1.25%

 Ratio between FP and read instructions: 0.55

 Ratio between load and store instructions: 2.23

Cycles stalled 10.9% and 7.6% with memory access outstanding

 Cycles stalled with L1D miss 4.13%

 Cycles stalled with L2 miss 4.05%

 Cycles stalled with L3 miss 3.43%

Figure 1: Profile of Alya running on a FPGA.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 16 of 58

Now that AVBP 7.7 has been released with GPU support, we will re-evaluate this position and

see if we can extract a new mini-app. However, to date, a mini-app has not been required due

to AVBPôs ease of portability.

ARM cluster

AVBP has been tested on the INTI cluster at TGCC, FULHAME cluster at EPCC and JUAWEI

cluster at JSC from EPI (hi 6464 Huawei early silicon). Performance is on track with current

user experience on x86 clusters but is highly dependent on the compiler vendor and compiler

version. Partial results can be found here [14] and consolidated results will be published in

2021.

AMD cluster

AVBP has been ported and tested up to 132k cores in the PRACE system IRENE from TGCC

equipped with EPYC 2 AMD processors with near perfect scaling. See Figure 2, which shows

strong scaling of AVBP on IRENE, for both an explosion simulation (circles) and a turbulent

channel simulation (triangles) versus ideal acceleration. Access to the HLRS cluster (Hawk)

has not been granted yet as the machine was delayed.

Figure 2: AVBP strong scaling on IRENE, for explosion and a turbulent simulations.

Power9+GPU clusters

Access to the CTE IBM Power9 system from BSC equipped with V100 GPUs is still pending.

Nvidia GPU cluster

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 17 of 58

CERFACS has been granted an early access to the new GPU partition on the JEANZAY system

(Tier 1 - IDRIS) in France with 300k CPU hours to optimise and perform the aeronautical

combustion chamber use Case. We are working jointly with IDRIS, HPE and Nvidia on the

optimisation of the code for this activity.

For the plans for the next 12 months

¶ Optimisation of AVBP on V100 and test on A100 GPUs

¶ Test AVBP on RISC-V in collaboration with EPI.

¶ Test AVBP on Fujitsu A64FX ARM based processors

¶ Test AVBP on AWS Graviton ARM based processors

2.4 CODA/DLR

To test CODA's computational kernel on novel architectures and accelerators a mini-app has

been created, thereby removing the need to adapt the entire workflow of CODA. This mini-app

contains a set of representative benchmarks that evaluate the Sparse Linear Systems Solver

library (Spliss), which runs CODAôs computationally intensive linear solver.

GPU cluster

The work carried out focused on the porting of Spliss to GPUs, which has been achieved. After

DLRôs GPU cluster was put into operation during this period, first performance results of Spliss

on GPUs were evaluated and up to 25x runtime improvement for initial benchmarks was

achieved. Currently, Spliss is extended to support the efficient usage of multiple GPUs per

compute node. Spliss is now ready to be used by CODA, whereas the computation in the linear

solver can be transparently switched between CPU and GPU. Upcoming work will focus on

testing and evaluating the entire workflow of CODA with the linear solver running on GPUs.

AMD cluster

After DLRôs new AMD HPC cluster CARA went operational in February 2020, CODA and the

surrounding workflow were installed and intensively tested. After identifying the ideal hybrid

setup and adapting all workflow components to CARA, efforts were focused on evaluating the

scalability of CODA on CARA using the EXCELLERAT use cases C6U1 and C6U2. The use

case solves the Reynolds-averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras

turbulence model in its negative form (SA-neg). It uses finite volume spatial discretization with

an implicit Euler time integration. The input of the use case is an unstructured prism mesh from

the NASA Common Research Model (CRM) with about 5 million points and 10 million volume

elements. The mesh is a rather small mesh chosen for strong scalability analysis of CODA at

reasonable scales. Production meshes are at least 20 times larger and accordingly achieve a

good efficiency on much higher scales. For the small mesh, the use case achieves about 60%

parallel efficiency on the largest available partition on CARA with 512 nodes and 32,768 cores.

After getting access to DLRôs new AMD HPC system CARA based on AMDôs EPYC

architecture and an Intel Cascade Lake test system during the period, both systems were

evaluated with the use case. The initial results were compared, and we identified the ideal

hybrid MPI-OpenMP setup for both architectures. Furthermore, we found a limitation in the

AMD EPYC architecture that limits the efficient hybrid usage to four OpenMP threads per MPI

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 18 of 58

one. There is currently no plan to publish more on this result. This restricts CODAôs hybrid

capabilities and, thus, also its scalability since CODA relies on using as many OpenMP threads

per MPI rank as possible. The Intel Cascade Lake architecture did not impose those limitations.

2.5 Nekbone (Nek5000)/CINECA,KTH,UEDIN

The Reference Application Nek5000 has a mini-app entitled Nekbone [15] which is used for

co-design.

2.5.1 FPGA at EPCC

Work was undertaken exploring the role of FPGAs to accelerate Nekbone, both in terms of

performance and also power efficiency. This was undertaken using Xilinxôs latest Alveo U280

FPGA, and comparisons were made against a 24-core Intel Xeon Platinum Cascade Lake CPU

and NVIDIA V100 GPU. Details around the optimisations' steps are provided in D3.2 Report

on Exa-enabling enhancements and benchmarks and explored in depth in [16].

The table below (Table 1) contains performance and energy efficiency comparison of multiple

kernels against other technologies, and illustrates a summary of results achieved. Running over

all 24 CPU cores resulted in an energy efficiency of 0.37 GFLOPS/Watt. For comparison, we

also include a single core CPU run, which resulted in 5.38 GFLOPS and energy efficiency of

0.08 GFLOPS/Watt. GPU performance was 407 GFLOPS and, due to the high performance, an

energy efficiency of 2.34 GFLOPS/Watt. The GPU's performance is impressive, although it

should be noted that the bespoke GPU acceleration in Nekbone has been developed and tuned

over many years and GPU generations.

Description Performance

(GFLOPS)

Power usage (Watts) Power Efficiency

(GFLOPS/Watt)

1 core of CPU 5.38 65.16 0.08

24 cores of CPU 65.74 176.65 0.37

V100 GPU 407.62 173.63 2.34

1 FPGA kernel 74.29 45.61 1.63

2 FPGA kernels 146.94 52.47 2.80

4 FPGA kernels 289.02 71.98 4.02

Table 1: Performance and energy efficiency comparison of FPGA kernels [16].

One of our FPGA kernels draws 45.61 Watts (the FPGA idle with the bitstream loaded draws

39 Watts), and whilst the energy efficiency of 1.63 GFLOPS/Watt of a single kernel is

significantly higher than the CPU, it is somewhat disappointing when compared against the

GPU.

However, the advantages of FPGAs start to become more apparent as we scale the number of

kernels. We can fit up to four of our kernels on the U280, and at this configuration we achieve

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 19 of 58

289 GFLOPS. This is over four times the performance of the 24 core CPU, and 71% of the

performance of the V100 GPU. The energy consumption of four kernels is 72 Watts and it can

be observed that, on average, adding an extra kernel requires approximately an additional 7

Watts, with a performance increase close to 74 GFLOPS per kernel. With four kernels, the

energy efficiency is over 4 GFLOPS/Watt, which is significantly higher than that of the GPU.

Therefore, whilst best performance of the FPGA vs GPU still favours the GPU (although it is a

tough test), energy-efficiency-wise there are significant advantages of using FPGAs.

2.5.2 HPC architectures at CINECA and E4

Nekbone has been compiled on four different classes of system reported below for both

compiler-specific and compiler-independent tuning. The four systems are as follows:

Galileo cluster (CINECA).

1000 Intel Broadwell nodes (2x18-core Intel Xeon), and OmniPath interconnection, plus 60

nodes equipped with K80 Nvidia accelerators and 2 with V100 Nvidia accelerators.

Marconi A3 partition (CINECA):

Lenovo NeXtScale platform, featuring Intel Xeon Skylake (SKL) processors, with a peak

performance of about 20 PFLOP/s.

Marconi100 (CINECA)

980 nodes; each node is equipped with 2x16 cores IBM POWER9 AC922 plus 4 NVIDIA Volta

V100 GPUs, all connected with a high-speed internal network Mellanox InfiniBand EDR

DragonFly+.

ARMIDA (E4)

ARM Infrastructure for the Development of Applications cluster, located at E4 Computer

Engineeringôs premises, with 8 Marvell TX2 compute node, each with 64 Marvell TX2 cores

and a number of Nvidia Tesla V100.

Nekbone has run with 100 CG (Conjugate Gradient) iterations, polynomial degree 9 and for 10

GLL points in each dimension. The reference test is ñexample2ò from the official repository

[17]. It runs without the multigrid preconditioner and without user-provided decompositions of

the processor counts and the elements

Figure 3 below shows the weak scaling, by keeping constant the number of elements per core

(128), with the different architectures listed in the legend. Using a patch about MPI tag misuse

in the code, Nekbone ran well over 152,160 cores on Marconi A3, with a peak performance

of 35,9 TFLOP/s, using OpenMPI (3.0).

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 20 of 58

Figure 3: Nekbone weak scaling on various CPU clusters.

Figure 4 below shows the weak scaling on Marconi100 using the full machine. The best

performance has been achieved recently at 835 TFLOP/s (near Petascaling performance) in

OpenACC configuration, out of a total of 3792 GPUs, with a weak scaling on a full machine.

Figure 4: Weak scaling of Nekbone on Marconi100.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 21 of 58

2.5.3 SX-Aurora at HLRS (KTH)

KTH has started to port and tune the entire spectral element code Nek5000 to the SX-Aurora

TSUBASA system at HLRS. Compared to heterogeneous computing platforms, SX-Aurora

offers a friendlier programming model, with a native execution mode, allowing a developer to

use the full potential of the system without having to deal with the complexities of

heterogeneous systems. However, good performance is only achieved if the code vectorizes

well.

The experience of porting and tuning Nek5000 on GPUs helped us to formulate suitable loop

transformations for increased vectorization and work per iteration throughout the code. In key,

compute-intensive kernels, the transformations achieved 40% of the theoretical peak

performance of a single SX-Aurora core. Figure 5 shows the performance of the Nekbone mini-

app running on three different hardware architectures, SX-Aurora, two Intel E5-2698v3 CPUs

and a Nvidia P100 GPU. Using all eight cores, Nekbone achieved close to 10% of the SX-

Auroraôs peak performance compared to the 5.5% of peak performance achieved for the Nvidia

P100 GPU. The porting and tuning efforts will be presented in a paper accepted for HPCAsia

2021 [18] .

Figure 5: Performance of Nekbone running on three different hardware architectures.

2.6 ScaLAPACK/RWTH

The target ScaLAPACK routine, namely the singular value decomposition routine pdgesvd, has

yet to be developed into a mini-app, and is scheduled to occur over the coming months, along

with extending the functionality of the DMD algorithm (See T4.3 Data Analysis, Section 4.3).

Once the mini-app will be ready, we will start with profiling analysis and performance

measurements on the various systems and architectures available at CINECA, starting with the

Intel-based Tier-1 cluster

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 22 of 58

2.7 Summary of Co-Design Activity

The WP-transversal co-design working group and the co-design task (Task4.1), have

contributed to EXCELLERATôs Advanced Services. On the software co-design side, based on

the reference codes and other relevant applications and libraries of the engineering workflow,

the operations, kernels and algorithmic features are characterized that are common and widely

used in engineering applications and which demand large amounts of computational time. On

the hardware side we are cooperating via its interest groups with original equipment

manufacturers and system integrators considering the complete hardware bandwidth from

standard x86_64 architectures to ARM CPUs, GPUs, NEC Vector processors down to FPGAs.

Thanks to our efforts over the last year, we now have an agreed methodology to follow, wherein

the clientôs application (or mini-app) are ported to our collection of cutting edge HPC platforms,

and the required code-adaptations are then fed back to the client.

To date, we have exercised our nascent co-design service using CoE members. As such, our

clients have been our own Reference Applications owners. Five applications have been

considered for our co-design service, where two of these have mini-app versions, and a third

mini-app is on the horizon. Four of the applications have now been ported to a number of novel

machines, including CPU clusters, GPU clusters, and a FPGA cluster, and initial results have

been highly promising. The act of porting was either performed by the owners themselves or,

for two of the applications, by CoE members at other core partner sites. For the latter case, the

required code-adaptations were fed back to the code owners where.

Finally, it is important to note that, given the success of our period of testing, we are proud to

announce that the EXCELLERAT CoE now provides consulting for software and systems co-

design. This service is now live, and available within the Co-Design Engineering Software- and

System-Design service. See the Reports on the Service Portfolio, deliverables D4.2 and D1.6

for a more detailed description.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 23 of 58

3 Task 4.2: Visualization
To focus I/O on a manageable level and to supervise simulations during runtime, the main goal

of this task is the enablement of in-situ post-processing capabilities in selected applications.

One tool chosen for this purpose is Vistle [19] for which two in-situ interfaces have been

developed. The first one is the LibSim interface used by VisIt [20] as outlined in D4.2. The

second interface is obtained via the SENSEI [21] framework. In D4.2 we described an approach

made using Catalyst [4], but this was abandoned. This decision was made because SENSEI

follows a similar approach as Catalyst in terms of the simulation data adapter but also provides

an interface for post-processing backends like Vistle and is, therefore, more flexible. In this

project, a backend adapter for Vistle was developed.

While Vistle is focused on interactive visualization in 3D virtual environments, the other post-

processing tool developed in this project is a High-Performance Computing analysis tool

(PAAKAT). This tool allows a straightforward real-time handling of data arisen from

simulations with pre-configured algorithms based on the Visualization Toolkit (VTK) [22].

3.1 Interactive in-situ visualization with Vistle

Vistle implements a modular architecture, where every data/-source, -filter or -sink in the post-

processing pipeline is represented as a Vistle module. In multi-process mode, these modules

run as separate processes, that communicate and share their data via shared memory (SHM).

Therefore, to retrieve data from simulations, the data must be copied to a Vistle-controlled SHM

segment.

In single-process mode all modules run in a separate thread of the single main process. In this

mode data objects are passed on directly via pointers. This would theoretically allow direct

usage of simulation data, but practically Vistleôs internal data representation is not yet suitable

for input of outside of Vistle allocated data. Also, these threads use MPI independently,

MPI_Init_thread with MPI_THREAD_MULTIPLE is required. Running Vistle, in single-

process mode, coupled with a simulation, requires the simulation to initialize its MPI

environment accordingly.

A connected simulation is represented in the Vistle pipeline as a regular Vistle module, as shown

in Figure 6. These modules only request simulation data for the connected data ports and in

configurable intervals. Therefore, only the requested data is converted and passed to the Vistle

pipeline. These connections, the following pipeline modules, as well as the in situ-modulesô

parameters can be changed during the run-time of the simulation to provide maximal flexibility.

The cost of this flexibility is the necessity of transforming and copying the simulation data into

Vistleôs representation. While the computational overhead is expected to be rather small, the

memory overhead can be huge, especially if multiple time steps are kept for visualization.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 24 of 58

Figure 6: Connected LibSimController -module.

3.1.1 LibSim interface for Vistle

The LibSim interface consist of a small library that is statically linked to simulation codes. The

simulation uses this library to pass data retrieving callbacks to the post-processing back-end.

The interface passes around raw data-array pointers and therefore avoids VTK. Once such a

simulation starts, it uses a connection socked that waits for the back-end to connect. After the

connection, the static library dynamically loads a run-time library. This is where Vistle

intervenes through replacing VisItôs libsimV2 runtime library with an own implementation.

This dynamically linked library manages the communication with the Vistle module and the

data conversion from LibSim to Vistle. A brief user guide on how to use Vistleôs LibSim

interface is presented in the Appendix of this deliverable (see Section 9.2.1).

3.1.2 Vistle post-processing backend for SENSEI

SENSEI provides an interface, that post-processing back-ends can adapt, to connect to SENSEI

instrumented simulations. Which back-ends are used can be configured at the start of a

simulation via SENSEIôs configurable analysis adapter. The SENSEI interface adapted from

Vistle converts the VTK objects provided by SENSEI simulations to Vistle-objects, which are

then inserted in the Vistle pipeline. While the LibSim interface allows simulations to register

arbitrary commands this interface only features the basic run and pause commands. A brief user

guide on how to use Vistleôs SENSEI interface is presented in the Appendix of this deliverable

(see Section 9.2.2).

Simulation data

Commands
providedby the
simulation

Module parameter

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 25 of 58

3.2 In-situ visualization with PAAKAT

The PAAKAT (ñLooking atò) library has been designed as an HPC tool which encourages

scalability and portability of in-situ analysis in large-scale simulations. The emphasis is on

reducing such simulations' output data during run-time by using algorithms already available

in VTK. The main difference regarding the great deal of effort made to develop software

specialized on the solution of in-situ visualization and analysis is related to the fact that

PAAKAT encourages scalability and portability. This has been done by focusing on data arisen

from VTK filters while it obviates rendering in the ParaView [23] source code (version 5.6).

Modifications performed in ParaView encourages the use of the C++ VTK API. As a

consequence of these modifications, filters must be implemented by using C++ instead of the

Python [24] scripts created by ParaView.

Using the whole ParaView framework, compilation times became a real issue. Tests on four

nodes of MareNostrum 3 (Barcelona Supercomputing Center, Spain) [25] with a total of 64

cores resulted in a compilation time of about one and a half hours. By obviating rendering and

therefore avoiding the need of big third-party libraries like Python and/or OpenGL [26], the

compilation time was reduced to only nine minutes.

A list of the compiler options used to achieve this are show in Figure 7. These options have

been successfully used in two supercomputers, Beskow (KTH Royal Institute of Technology,

Sweden) and Nord III (Barcelona Supercomputing Center, Spain). As future work, more

computer systems and compilers must be tried.

Figure 7: Compiler options for modified ParaView 5.6.

3.2.1 MPMD-VTK example

In this example two codes are run by using the Multiple-Program, Multiple-Data (MPMD)

programming model while an interpolation procedure is performed.

A given source mesh is used to perform a turbulent simulation, while a principal component

analysis (PCA) is carried out through a destination mesh. Input files for this problem have been

supplied by Christian Gscheidle (Fraunhofer SCAI) as part of the Data Analytics task.

The problem can be solved in three main steps. First, interpolation is performed, then the

interpolated data is extracted from ParaView, and thereafter used it as input data in the PCA

analysis. By means of an appropriately compiled ParaView, the procedure described above can

be performed completely using Python (paraview.simple.Resample.WithDataset,

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 26 of 58

paraview.simple.ProgrammableFilter, and sklearn.decomposition.PCA for interpolation,

extraction, and machine learning analysis, respectively).

Now, the parallel in-situ execution of this procedure is usually performed by using the Single-

Program, Multiple-Data (SPMD) programming model in which the same processors execute

numerical simulation and visualization in a staggered way. This means that they are executed

one after the other. Another option is to execute a MPMD programming model where different

processors are given to simulation and visualization. In this case, simulation and visualization

are independent, but extra communication between sets of processors is necessary. While the

MPMD model is widely used in numerical simulations of multi-physics problems, its effect on

in-situ visualization problems has been recently studied (See Figure 8). In the problem that is

being tested here, the usage of a MPMD execution could encourage the performance and load

balance of the entire parallel execution (numerical simulations and in-situ). Additionally,

compilation of the codes can be simplified, since codes are independent of each other. This

means that the turbulent flow problem could be simulated using whichever parallel code (with

or without in-situ instrumentation) while the analysis could be performed by means of either

C++ or python, and even using either serial or parallel codes.

Figure 8: Parallel programming models. (a) Single-Program, Multiple -Data (SPMD) or in-line visualization.

(b) Multiple -Program, Multiple -Data (MPMD) or in -transit visualization [27].

As mentioned above, another interesting point is related to the load balance. Figure 9 shows the

number of cells and dimensions of the given meshes. By using a standard domain

decomposition method for the distribution of the parallel work in the turbulent flow problem, it

is relatively easy to conclude that during the execution of the in-situ stage most of the processors

could be idle when a SPMD execution model is used.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 27 of 58

Figure 9: Source mesh (blue and grey) of 4.67e6 cells and volume of 4.43x4.09x0.22 ╬□. Destination mesh

(red) of 1.25e5 cells and volume of 0.05x0.05x0.05 ╬□.

In order to overcome this drawback, an example using the MPMD model has been prepared

(see Figure 10) The setup consists of two different codes, one for the destination mesh and

another for the source mesh. The first one reads the destination mesh and sends its points to the

source-code. The second code reads the source mesh and performs interpolations with data

received from the destination code. Initially both codes are executed at the same time, and once

meshes are read, the destination code sends its points towards the source code. This one

performs the interpolations and sends back the results to the destination code. In the future,

destination code will use the received data to perform the corresponding machine learning

analysis.

Figure 10: MPMD execution model of source code and destination code through n1 + n2 processors p.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 28 of 58

3.3 Summary of Visualization Activities

The main focus of the work in task 4.2 has been to put on the development of post-processing

tools and workflows for exascale engineering simulations. Next to consulting in visualization

topics and training offerings, the main effort of the visualization task is the development of

scalable in-situ post-processing tools. New things we bring to the table are interactive in-situ

visualization in virtual environments and performant in-situ analysis of large-scale simulations.

With the presented in-situ approaches it is possible to easily couple Vistle with a wide variety

of simulations without the need to implement a special in-situ interface. The drawback is that

the transformation of data has to be done twice, once from the simulationôs representation to

LibSim/SENSEI format and then to Vistleôs format. Because Vistleôs data objects are designed

to control the lifetime of their data, even in the case where no transformation would be needed,

the data must be copied into Vistleôs object representations (in multi-process mode to SHM,

but also in single process mode). On the one hand this can cause a huge memory overhead, but

on the other hand it allows to interact with the data independently of the simulation.

So far, the core-code that has been successfully run in-situ with Vistle was Nek5000 by using

its LibSim interface. In the next phase of the project more core codes will be integrated, and

measurements of the overheads will be made.

Similarly, PAAKAT has shown encouraging results for in-situ analysis of large-scale

simulations. The simple and flexible API made integration into both Nek5000 and Alya

straightforward, demonstrating the potential of PAAKAT as a general in-situ toolkit.

 Public

Copyright © 2020 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Deliverable D4.6 Page 29 of 58

4 Task 4.3: Data analytics

4.1 In-Situ Data Analytics

4.1.1 Software Architecture

Fraunhofer has continued the development of a software framework for the purpose of in-situ

analysis of CFD data. Some key requirements have been identified which are considered during

the implementation:

¶ Online and offline application of the toolbox

¶ Simple integration with existing ML and UQ libraries

¶ Efficient back-end based on (parallel) linear algebra libraries

¶ Connection to standard in-situ interfaces and data readers

¶ Interactive user-interface based on a client/server setup

The overall concept of the selected architecture is shown in Figure 11. For the purpose of a fast

and flexible development and validation of algorithms, most existing Machine Learning

libraries provide a Python API and allow an interactive usage through ipython or jupyter servers

[28]. In order to take advantage of existing libraries, this is also a fundamental design strategy

for our software toolbox. The core API follows the definition by scikit-learn [29] and thus

enhances a simple integration of our code with external methods into a single processing

pipeline.

Figure 11: Software architecture for in-situ data analysis [30].

Besides flexibility, efficient implementations of the algorithms are a major requirement in the

context of large-scale data analytics. Therefore, we keep the python layer as thin as possible

and build on existing math libraries, e.g. OpenBLAS or MKL, for heavy computations. To

further increase efficiency, a high-level parallelization is set up via mpi4py [31]. For low level

parallelizations that rely on more intense communications, efforts have been put into the

