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List of abbreviations

3D Threedimensional

AMR Adaptive Mesh Refinement

API Application Programming Interface

ASCII American Standard Code for Information Interchange
AVX Advanced Vector Extensions

CoE Centre of Excellence
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CRM Common Research Model

CUDA Compute Unified Device Architecture

DMD Dynamic Mode Decomposition

EPI European Processor Initiative
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FPU Floating Point Unit
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HDF5 Hierarchical Data Format 5

HIP Heterogeneousompute Interface for Portability
HPC High-Performance Computing

ISA Instruction Set Architecture

I/0 Input/Output

JOSS Journal of OpefrSource Software

MKL Math KernelLibrary

ML Machine Learning

MPI Message Passing Interface

MPMD Multiple-Program, MultipleData

NetCDF Network Common Data Form

OpenACC  Open Accelerators

OpenMP Open MultiProcessing

PAPI Performance Application Programming Interface
PCA Principal Component Analysis

PCE Polynomial Chaos Expansion

PETSc Portable, Extensible Toolkit for Scientific Computation
POD Proper Orthogonal Decomposition

PVC Precessing Vortex Core

Qol Quantity of Interest

RANS Reynoldsaveraged NaviefStokes equations
SENSEI Scalable in situ analysis and visualization
Sr Strouhal Number

SHM Shared Memory

SPMD SingleProgram, MultipleData

SVvD Singular Value Decomposition

TCP Transmission Control Protocol

TGCC Tres Grand Centre de calcul du CEA
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Ul User Interface

uQ Uncertainty Quantification

V&V Validation & Verification

VTK The Visualization Toolkit

XDMF eXtensible Data Model and Format
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Executive Summary

This deliverable reports on the progress and significant achievements in work package 4 of the
EXCELLERAT prgect. The work package deals with the development of EXCELLERAT's
enhanced services; clesign, visualization, data analytics and management, in essence
developing tools for an application's entire lifecycle.

The significant achievement in this reportingripd has been to formulate prototypes of the
enhanced services outlined in deliverableZD4calable irsitu visualization workflows for
both interactive and neimteractive analysis, #gitu data analytics and uncertainty
guantification frameworks andrewly designed platform for HPC specific transfer and data
managemeni hese services habeendeveloped and implemented based onuse s redds
either using derived model problems or sdadl®wn formulations of the full useases.

The plans for theemainder of the project are to continue developing the enhanced services,
advanced past, current prototypes and focus on the integration of the development into the full
usecases in EXCELLERAT.
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1 Il ntroducti on
This document reports on the progress and significant achievements in work package 4 of the

EXCELLERAT project. The work package deal s
co-design, visualization, data analytics and management, in essence developirfigr tanls
applicationds entire I|ifecycle.

As described in deliverable D4Report on the Service Portfolimols and methods developed
within this work package are derived based
cases for solving engineering simutetts at scale, as outlined in theircaled usesstories.
Given the diver sit y-code$ paHicUGrHdclsEsRadTod mrmudating e
services which are both codand applicatioragnostic, enabling reuse and integration into
several of the ae-codes. Marketable services developed in this work package will be identified

by work package 1 for inclusion in EXCELLERAT's service portfolio.

The deliverable is structured as a progress report. Each task in work package 4 give details of
the work doe, and progress towards realising the envisioned services outlined in deliverable
D4.2 and outline future work for the remainder of the project.

2 Task Clocdksi gn

EXCELLERAT follows an indirect calesign paradigm, wherein Core Partners gain access to
theearly release of stataf-the-art hardware, where this hardware is available typically due to

a close working relationship between the vendor and the Core Patireeavoids airectco-

design paradigm, as vendors typically will not alter their hardwateenefit a small set of
applications.This indirect cadesign paradignpermits EXCELLERAT to exploit trends in
software and hardware and match them to the code design issues of our Reference Applications
running ourusecases.

The caedesign working grop agreed a methodology

1 Firstly, target Reference Applications are chosen.
1 Full applicationgnay be reduced to miaipps
o where each mirapp is a small bundle of highly portable source code, with
example input and output files,
o which retains the computational characteristics of the full simulation, e.g.,
computationakernelsare retained
A perhapskey data movements epochs, such@sare retained
o This can circumventrrelevantissues that can arise wh@orting to novel
architectues.
1 The full code or mini-app is then ported to existing hardware or emulators,
0 associated libraries may also need to be installed
1 Target simulation is also provided
0 ported code is optimised if time permits
Initial profiling is then performed to locate kernels of interest,
Profiling and performance are measured
0 using emerging libraries where possible,

= =4
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1 Code adaptations and/or improvements are investigated and reported back to owners.

We have created and maeaga CeDesign Working Group, which monitors all -design
activities. These activities occur across many other Tasks, specifically,

1 T3.1: Nodelevel performance optimisation,
T3.2: Systerdevel performance towards exascale,
T3.4: Test lab for emergingc¢hnologies,

T4.1: Codesign,

)l
)l
1 T3.5: Validation and benchmarking suites,
)l
1 T4.3: Data analytics,

1 T5.5: HPC service provisioning

where T4.3 providekey linear algebra routines to test alongside our Reference Applications.
T3.4 hels locate and document engang technologies, T5.5 provid@ccess to cutting edge
platforms or emulators of future platforms, and T3.5 simpdetermine bottleneck kernels via
profiling the reference applications. T3.1 and T3.2 perform the-lev@daccelerator tests.
Lastly, itshould be notethatwe outsource required effort through our ongoing collaborations
with the PORCoE[1].

During the last yearthe target Reference Applicaticsodes involvedn co-design have been
identified asAlya, AVBP, CODA, Nekbone (Nek5000), and a particular dense linear algebra
SVD solver from ScalLAPACK, namelydgesvd as this is the key routine employed by the
DMD method,describedn Task 4.3 Data Analytics (see Section 4.3).

Our living document staetd life as a Word document in our BSCW, but this enforced a
debilitatingsingle-editor bottleneck, thus the document was moved to our Wiki, which permits
multiple concurrent editors.

As planned, as part of our living document, we have a Section contantnipsheet for
authors to prepare their codes for exascale, for portable optimisations that are not tied to any
particular hardware. This was produced, in collaboration with another CoE, namely
CompBioMed[2], and is includedh both the live working group document on our Wiki and in

the Appendix of this deliverablsee Sectio®.l).

Finally, we had planned to organise a joint Birds of a feather (BoF) seatioBTP4HP (3]
at |1 SC620; however, t hl9dtisplansed wbadiths BoFsedsiod ue t
at 1SC621 or a viirtwual workshop in 202

The remainder of this Section describes the novel hardware currently employed by the co
design working group, along withhighlevel overview othe status of each of the participating
Reference Applications.

2.1.1 Cutting edge hardware employed to date

A full list of current hardware availabte the CoE and is maintained by Task.@available
in the wiki. Regarding cdesignthe hardware involvetb dateareas follows:
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A AMD EPYC cluster at TGCC (Tres Grand Centre de calcul du Q&A)
A AMD CPU and GPU clusters at DLR

A ARM Cavium ThunderX2 cluster from HPE at EP(Z].

A ARM Marvell ThunderX2 and Nvidia Tesla GPUs, ARMIDA, from EPI at E4

[6].
A ARM thunderx2 cluster & GCC (Tres Grand Centre de calcul du CEH)

A HPE SGI
A GPUcluster JEANZAY systematIDRIS [7].

A Huawei
A Huawei A hi 6474 e dUWAWEI frem IEPI@todulch c | us't
Supercomputing Centre

A IBM
A Power9 plus NVIDIA Volta GPUs, Marconil00, at CINEQ#.
A Power9 + GPUs Cluste€TE, at BSC[9].

A Intel CPU cluster, Galileo, at CINECJAOQ].

A Lenovo NeXtScalgplatform, featuring Intel Xeon Skylake (SKL) processors,
Marconi A3 partition, at CINECA11].

A NEC
A SX-AuroraVector Machine at HLR§L2].
A Xilinx
A Xilinxds HGAduster at ERCQL3].
2.2 Alya/BSC

In this second year we have focused in compahe@penACC and CUDA implementations
to measure thadditional performancthat is available by using a lower level implementation
strategyThese experimentsave been carriedubon tailored miirapps generated to reproduce
the assembly and linear solver phases of the-imegration.

Despite the bettgoerformance obtained witie low-level optimal kernels, those are not our
preferredoption becausthey complicate the maimance and further development of the ¢ode
especially on the parts of the code related with discretizationnaodiellingmethods, such as
turbulence models, which are maintained by application scientists rather than computer
scientist. Nonetheless, thitudy provides us a sort of ideal performance reference for the GPU
version of the code.
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POWER 9 +NVIDIA V 100 cluster

We tested our new miapp on the POWER9 CTE clustertbke Barcelon&upercomputing
Center This platform hasan architecture similar tdhé Summit supercomputdsut with 4
GPUs instead of 6 GPUser node For the miniapp related with the assembly phaes
benefits ofthe low-level implementation were not only caused by a betteing of the
implementation but also an elemeapmecificimplementationAs a consequengcspeedups of
up to 2x were obtained. For the algebraic solyer elemenspecific factor was not present, so
thelow-levelimplementation outperforms thikrectivesbasedapproach only by 15%.

For more information on thiwork, and others outlined belowlease se®3.2Report on Exa
Enabling Enhancements anBenchmarksand the Section om3.4 TestLab for Emerging
Technologies

Plans for the next 12 months
- Test Alya on new prexascale EuroHPC architectures

- Test Alya omnovel ARM CPUs

Alya on FPGAs

We are currently working on porting Alya to FPGAs and as an initial step have performed some
focussed experimentation. This has enabled us nottonflentify the most time intensive
kernel of the code, but furthermore to ursland whether it is likely to be of benefit on the
FPGA or not.

We found that thesi_element_operations_fdstrnel accounts for around 78% of the runtime
with one of the standar@stcases which modelssphereand containd 6 million elemens.

This kernel is called for every single element, and constructsatiex of equations that will
then be solvedwWhilst the individual executionsf the functionsare quick, the fact that it is
executed so frequently accounts for such a significant rentaround 90 seconds for every
element which is performed twice per timestep). We profiled this asen§API library and

tool to interpret these resulthat has been developed as part of EXCELLERAhich
performs analysis on the performance courdaersgenerates a focussed report of metrics that
are important to HPC codead the summary is illustratéd Figure 1.

This profile is for the specifiqsi_element_operations_fastbroutine and it is telling us that

on average the routine is providing 1.54 GFLOP/s performance, which is very low, with the
CPU Floating Point Units (FPUs) at less than 50% occupancy. Furthermore, the CPU is stalling
for ova 10% of the time (doing no work) and most of this (7.6% of all cycles) are due to
memory stalls where the CPU has to wait for data to be made available. Furthermore, there is
an imbalance of instructions, where for evidogating-pointcalculation therera approximately

two data reads. Whilst it is still fairly early on this work, we believe that this summary means
that there is potential here for FPGA acceleration, whereby reworking the kernel as a dataflow
algorithm we can significantly improve the FRIdcupancy and reduce the number of overall
stalls. We can also significantly increase the amoufibafing-point capability, and it can be

seen that currently the CPU is not vectorising these properly (only one #oadieg-point
operation per FPU peaycle, rather than the 8 that it is theoretically capable of.) There are a
number of dependency issues within the algorithm that need to be addressed to port onto the
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FPGA- Thisis our current area of focuandfrom this early study we think it is fayrlikely
that the technology will show some benefit.

Total number of calls: 30 (30 profiled) and 1 dynamic memory allocations
Number of counter updates: 30 (30 possible, 100.0%)

Total execution time 2108.94 seconds, total number of billion cycles 7767.21

89.08% of cycles issued uop for execution, 77.58% cycles retired a uop

Average MIPs of 11147.56 and 0.0 single MFLOP/s and 1540.12 doublELMDP/s
Total number of single precision MFLOP: 0.0 (N/A% 256B, N/A% 128B, N/A% scalar)
Total number of double precision MFLOP: 3248029.72 (0.0% 256B, 0.0% 128B, 100.0% scalar)
FPU occupancy: 41.82%

Total data read from DRAM 230829.58 MB, i 80480.12 MB on L3 miss
Memory load operations that hit in L1: 99.61% and 0.19% missed
Memory load operations that hit in L2: 0.15% and 0.04% missed
Memory load operations that hit in L3: 0.02% and 0.02% missed
Memory load operationsthat hit in FB: 0.22% and 0.02% went to DRAM
Prefetcher performance:

Hit in L2 cache 66.57%

Missed in L2 cache 33.43%

Evicted without being used (useless) 1.25%
Ratio between FP and read instructions: 0.55

Ratio between load and store instructions: 2.23

Cycles stalled 10.9% and 7.6% with memory access outstanding
Cycles stalled with L1D miss 4.13%
Cycles stalled with L2 miss 4.05%
Cycles stalled with L3 miss 3.43%

Figure 1: Profile of Alya running on a FPGA.

2.3 AVBP/CERFACS

The original ABVP mini-app was based on the initial use cases of this CoE. However,
account for the dynamic mesh adaptation structinee the beginning of proje80% of the
source code of ABVRvas rewrittenHence theoriginal mini-app no longer reflecthi¢ main
code and can no longer be used.
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Now that AVBP 7.7 has been reledsdth GPU supportwe will re-evaluate this position and
see if we can extractreew miniapp However, to date, a mi@pphas not beerequired due
to AVBPOs ease of portability

ARM cluster

AVBP has been tested on the INTI cluster at TGR@LHAME cluster at EPCC and JUAWEI
cluster at JSC from ERhi 6464Huawei early silicon)Performance isn track with current
user experience on x86 clusténst is highly dependent on the compiler vendor and compiler
version.Partial results can be found hdfel] and consolidated results will be published in
2021.

AMD cluster

AVBP has been ported and tested up to 132k cores IRRA&CE system IRENE from TGCC
equipped with EPYC 2 AMD processors with near perfect scaBegFigure2, which shows
strong scaling of AVBP on IRENHor both an eplosion simulation (circles) aral urbulent
channel simulation (triangles) versus ideal accelerafaness to the HLRS clust@Hawk)
has not been granted yet as the machine was delayed.

16
14 ¢
12 A

10 A

Acceleration
o0
1

]
6_
4 e
2 o
o
0 1 TT T T T rrrrrrT LI L L L B N B L L B L B L L B L TTT
64 128 256 512 1024

Nodes [128 cores per node]

Figure 2: AVBP strong scaling on IRENE,for explosion and a turbulent simulations.

Power9+GPU clusters
Access tahe CTE IBM Power9systemfrom BSC equipped with V100 GPUsstill pending.

Nvidia GPU cluster
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CERFACS has been granted an early access to the new GPU partition on the JEANZAY system
(Tier 1 - IDRIS) in France with 300k CPU hours to optimise and performatrenautical
combustion chambarse Case.We are working jointly with IDRIS, HPE andvidia on the
optimisation of the code for this activity.

For the plans for the next 12 months

1 Optimisation of AVBP on V100 and test on A100 GPUs
1 Test AVBP on RIS€V in collaboration with EPI.

1 Test AVBPon FujitsuA64FX ARM based processors

1 Test AVBP onAWS GravitonARM based processors

2.4 CODA/DLR

To test CODA's computational kernel on novel architectures and acceleratonsapp has

been created, thereby removing the need to adapt the entire workflow of CODA. Thapmini
contains a set of representativenchmarks that evaluatiee Sparse Linear Systems Solver

l'i brary (Spliss), which runs CQDAGs comput at

GPU cluster

The work carried out focused on the porting of Spliss to GPUs, which has been achieved. After
DLROs GErwasqutmte dperation during this peribast performance results of Spliss

on GPUs were evaluated ang to 25x runtime improvement for initial benchmarks was
achieved Currently, Spliss is extended to support the efficient usage of multiple GPUs per
compute node. Spliss is now ready to be used by CODA, whereas the computation in the linear
solver can be transparently switched between CPU and GPU. Upcoming work wslldiocu
testing and evaluating the entire workflow of CODA with the linear solver running on GPUs.

AMD cluster

After DLROSs new AMD HPC cluster CARA went op
surrounding workflow were installed and intensively testederAftentifying the ideal hybrid

setup and adapting all workflow components to CARA, efforts were focused on evaluating the
scalability of CODA on CARA usinthe EXCELLERAT usecases C6U1 and C6UZTheuse
casesolvesthe Reynoldsaveraged NavieBtokes eqgations (RANS) with a SpalaAlimaras
turbulence model in its negative form (8¥&Q).It uses finite volume spatial discretization with

an implicit Euler time integratiorfhe input of theise casé an unstructuregbrism mesh from

the NASA Common ResedrdModel (CRM) with about 5 million points and 10 million volume
elements. The mesh is a ratlsenall mesichosenfor strong scalability analysist CODA at
reasonable scales. Production meshes are at least 20 times larger and accordingly achieve a
good effciency on much higher scaldsor the small mesh, thesecaseachieves about 60%

parallel efficiency on the largest available partition on CARA with 512 nodes angiB3ores.

Af ter getting access to DLROs new BPMO HPC
architecture and an Intel Cascade Lake test system during the period, both systems were
evaluated with thaise case. The initial results were compared, and we identified the ideal
hybrid MPFOpenMP setup for both architectures. Furthermore, we found a lonitat the

AMD EPYCarchitecture that limits the efficient hybrid usage to four OpenMP threads per MPI
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one.There is currently no plan to publish more on thisreJult.i s restricts COD
capabilities and, thus, also its scalability since CODAesabin using as many OpenMP threads
per MPI rank as possible. The Intel Cascade Lake architecture did not impose those limitations.

2.5 Nekbone (Nek5000)/CINECA,KTH,UEDIN

The Reference Application Nek5000 has a raipp entitled NekbonEL5] which is used for
co-design.

2.5.1 FPGA at EPCC

Work was undertaken exploring the role of FPGAs to accelerate Nekbone, both in terms of
performance and al so power efficiency. This
FPGA, and comparisons veemade against a 2bre Intel Xeon Platinum Cascade Lake CPU

and NVIDIA V100 GPU. Details around the optimisatiosteps are provided in D3Report

on Exaenabling enhancements and benchmaiks explored in depth {16].

The table belowTablel) containgperformance and energy efficiency comparison of multiple
kernels against other technologieadillustrates a summary of results aeed Running over

all 24 CPU cores resulted in an energy efficiency of 0.37 GFLOPS/Watt. For compeseson

also include a single core CPU run, which resulted in 5.38 GFLOPS and energy efficiency of
0.08 GFLOPS/Watt. GPU performance was 407 GFLOPS ardpdbe high performance, an
energy efficiency of 2.34 GFLOPS/Watt. The GPU's performance is impressive, although it
should be noted that the bespoke GPU acceleration in Nekbone has been developed and tuned
over many years and GPU generations.

Description Performance Power usage (Watts) Power Efficiency
(GFLOPS) (GFLOPS/Watt)
1 core of CPU 5.38 65.16 0.08
24 cores of CPU 65.74 176.65 0.37
V100 GPU 407.62 173.63 2.34
1 FPGA kernel 74.29 45.61 1.63
2 FPGA kernels 146.94 52.47 2.80
4 FPGA kernels 289.02 71.98 4.02

Table 1: Performance and energy efficiency comparison dfPGA kernels[16].

One of our FPGA kernels draws 45.61 Watts (the FPGA idle with the bitstream loaded draws
39 Watts), and whilst the energy efficiency of 1.63 GFLOPS/Watt of a single kernel is
significantly higher than the CPU, it is somewhat disappointing when comparestate

GPU.

However, the advantages of FPGgtartto become more apparent as we scale the number of
kernels. We can fit up to four of our kernels on the U280, and at this configuration we achieve
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289 GFLOPS. Thiss over four times the performance tiet24 core CPU, and 71% of the
performance of the V100 GPU. The energy consumption of four kernels is 72 Watts and it can
be observed that, on average, adding an extra kernel requires approximately an additional 7
Watts, with a performance increase close’4 GFLOPS per kernel. With four kernels, the
energy efficiency is over 4 GFLOPS/Watt, which is significantly higher than that of the GPU.
Therefore, whilst best performance of the FPGA vs GPU still favours the GPU (although it is a
tough test), energgfficiency-wise there are significant advantages of using FPGAs.

2.5.2 HPC architectures at CINECA and E4

Nekbone ha been compiledn four different classes of system reported below for both
compilerspecific and compilemdependent tuning. The four systemsasdollows

Galileo cluster (CINECA).

1000 Intel Broadwell nodes (2x4&fre Intel Xeon), and OmniPath interconnection, plus 60
nodes equipped with K8@vidia accelerators and 2 with V100vidia accelerators.

Marconi A3 partition (CINECA):

Lenovo NeXtScke platform, featuring Intel Xeon Skylake (SKL) processors, witpeak
performance oébout20 PFLOP/s.

Marconil00 (CINECA)

980 nodes; each node is equipped with 2x16 cores IBM POWER9 AC922 plus 4 NVIDIA Volta
V100 GPUs, all connected with a highbeed internal network MellandrfiniBand EDR
DragonFly+

ARMIDA (E4)
ARM Infrastructure for the Development of Applications clustecated at E4 Computer
Engineeringbés premises, with 8 Marvell TX2 cC

and a number of Nvidia Tesla VV100.

Nekbone has run with 100 CG (Conjugate Gradient) iteratpmignomial degree 9 and for 10

GLL pointsin@ach di mension. The reference test 1is
[17]. It runswithout the multigrid preconditioner and without ugeovided decompositions of

the processor counts and the elements

Figure3 belowshows the weak scaling, by keeping constant the number of elements per core
(128), with the different architectugisted in the legendJsing a patch about MPI tagisuse

in the code Nekbone ran well over 152,160 cores on Marconi A3, with a peak performance
of 35,9TFLOP/s, using OpenMPI (3.0).
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Weak scaling

e Galileo ® A3 = A100 no SMT e A100 SMT e ARMIDA
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Figure 3. Nekbone weak scaling on various CPU clusters

Figure 4 bdow shaws the weak scaling oMarconil00using the full machineThe best
performance has been achieved receatl835 TFLOP/s (nearPetascalingperformance) in
OpenACC configuration, outf@ total of 3792 GPUs, with a weak scalingaofull machine.

Weak Scaling full machine
® OpenACC nx=16, 1024 elems @& OpenACC+CUDAC, nx=10, 3584 elems
1000

100

10

Tflops/s

-

0,1
A 1 b D A0 Al ghk ,\rfé ,.fﬁ) 6\'2, ,\Q'Lb' 'LQ&% 1%11& 3&5‘6 %19‘1

num_gpus

Figure 4: Weak scaling of Nekbone omMarconil00.
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2.5.3 SX-Aurora at HLRS (KTH)

KTH has started to port and tune the entire spectral element code Nek5000 teAleoEX
TSUBASA system at HLRS. Compared to heterogeneous computing platformsursia

offers afriendlier programming model, with a native execution mode, allowing aldpgeto

use the full potential of the system without having to deal with the complexities of
heterogeneous systems. However, good performance is only achieved if the code vectorizes
well.

The experience of porting and tuning Nek5000 on GPUs helpedfasrialate suitable loop
transformations for increased vectorization and work per iteration throughout the code. In key,
computeintensive kernels, the transformations achieved 40% of the theoretical peak
performance of a single SXurora coreFigure5 shows the performance of the Nekbone mini

app runningon three different hardware architectur&<-Aurora, two Intel EE2698v3 CPUs

and a Nvidia P100 GPWsing all eightcores Nekboneachievedclose to 10% of the SX

Aur or ads p e adnpged o the 5.5 afrpealk performance achieved for the Nvidia
P100 GPUThe porting and tuning efforts will be presented in a paper accepted for HPCAsia
2021[18] .

—@— SX-Aurora

200 —l— 2 X E5-2698v3
—a— P100

Gflop/s

100

128 256 512 1,024 2,048 4,096

elements

Figure 5: Performance of Nekbone running on three different hardware architectures.

2.6 ScaLAPACK/RWTH

The target ScaLAPACK routine, namely the singular value decomposition rpdtiesvdhas

yet to be developed into a miapp,and is scheduletb occur over the coming months, along
with extending the functionality of the DMD algorithm (See TB&a Analysis, Sectio.3).
Once themini-app will be ready, we will start with profiling analysis and performance
measurements dhevarious systems and architectures availab@BECA, starting with the
Intel-basedTier-1 cluster
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2.7 Summary of Co-Design Activity

The WRtransversalco-design working group and the -design task (Task4.1), have
contributelt o EXCELLERATOs AQnre softveark coes®gn side,basad.on

the reference codes and other relevant applications and libraries of theesimgjrworkflow,

the operations, kernels and algorithmic features are characterized that are common and widely
used in engineering applications and which demand large amounts of computational time. On
the hardware side we are cooperating via its interestpg with original equipment
manufacturers and system integrators considering the complete hardware bandwidth from
standard x86_64 architectures to ARM CPUs, GPUs, NEC Vector processors down to FPGAs.

Thanks to our efforts over the last yame, now havein agreed methodology to follow, wherein
the client 0s -app)preported tb oupcollectiom of cuttingredge HPC platforms,
and the required coesdaptations are then fed back to the client.

To date,we haveexercis@ our nascento-designserviceusing CoE members. As sudur

clients have been our own Reference Applications owners. Five applications have been
considered foour co-designservice where two of these have miapp versions, and a third
mini-app is on the horizon. Four dfe applications have now been ported to a number of novel
machines, including CPU clusters, GPU clusters, and a FPGA cluster, and initial results have
been highly promisingrhe act of prting was either performed by the owners themselves or

for two of the applicationshy CoE members at other core partner sites. For the latterticase,
required codeadaptationsverefed back to theode ownersvhere

Finally, it is important to note thatjvgn the success of our period of testing, we are proud to
announce that the EXCELLERAT CoE now provides consulting for software and systems co
design.This servicas now live, and available within the €esign Engineering Softwarand
SystemDesign service. Selhe Reports on the Service PortfalideliverableD4.2 andD1.6

for a more detailed description.
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3 Task Mi.s2ual i zati on

To focus I/O on ananageabl&evel and to supervise simulations during runtime, the main goal
of this task is thenablemenof in-situ postprocessing capabilitiea selected applicains

One tool chosen for this purpose is Visil®] for which two insitu interfaces have been
developed. The first one is the LibSim interface used by Y28It as outlined in D4.2. The
second intrfaces obtained vidhe SENSE[21] framework.In D4.2 we described an approach
made using Catalyst [4], but this was abandofidéis decision was made because SENSEI
follows a similar approach as Catalyst in terms of theukition data adapter but also provides
an interface for pogtrocessing backends like Vistle andtiserefore more flexible. In this
project a backend adapter for Vistle was developed.

While Vistle is focused on interactive visualization in 3D virtualisonments, the other pest

processing tool developed in this project is a Hgirfformance Computing analysis tool
(PAAKAT). This tool allows a straightforward reine handling of data arisen from
simulations with preconfigured algorithms based on fessualization Toolkit(VTK) [22].

3.1 Interactive in-situ visualization with Vistle

Vistle implements a modular architecture, where every-gatarfce -filter or -sink in the post
processing pipeline is represented as a Vistle neodaimulti-processmode thesemodules

run as separaterocesss,thatcommunicate and share their data via shared memory (SHM).
Therefore, to retrieve data from simulations, the data must be copied to ecWittielled SHM
segment.

In single-process mde all modules run in a separate thread okthglemain process. In this

mode data objects are passed on directly via poinféis.would theoretically allow direct
usage of simulation data, but pracgdtsucabld | 'y Vi
for input of outside of Vistle allocated data. Also, these threads use MPI independently,
MPI_Init_thread with MPI_THREAD_MULTIPLE is required. Running Vistle, single
processmode, coupled with a simulation, requires the simulationntbalize its MPI
environment accordingly.

A connected simulation is represented in the
I Fi g6mfbese modules only request simulation
configurable intervals. Therefore, only the
pi pel i nceo.n nTehcetsieo n s , the foll owing pnomdeadliemsse m
parameters can betcmangkdt dersingulk &ei oont o p
The cost of this flexibility is Laeiopcdatsat
Vi s&# lerepresentation. While the computational
memory overhead can be huge, especially i f m
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wSystem Parameters
LibSimController_7

path 2/.visit/simulations/

mEMartoveec simulation name | nek5000

VTKVariables False
VecToScalar_6 contant grids False

ObjectStatis! frequency 1 = | o

Simulationdata

combine grids _| False

DomainSurface_1 keep timesteps [ True \

M Color, stop False | Module parameter

step _| False

Vistle Console & X |||lrun \% Commands

Type "help(vistle)" for help, it Fal ~~ providedby the
"help()" for general help £x A€ | simulation
>

finish False

Figure 6: Connected LibSimController -module.

3.1.1 LibSim interface for Vistle

The LibSim interface consist of a smal/l i br
simulation uses this |library poopassemd.t hacek
The i npeaesgsdesear caimrday apo idmttear s and t herefore

simul at,ji onustartas connecti on -esnodc kteod ctohnante cwa.i t
connection, the static -tliime ak iybrdayrnyavmistitdiles y i
ntervenes thr@udh bsepmtVEmendygi Mralry with an

[

This dynamically Ilinked | ibrary manages t he
data conversion fAborm elfi buSsienm htgowei Wess dldeeb Si m
interfaceinstlpe eSepmaredli x 8ectohia 1del i verabl e

3.1.2 Vistle post-processing backend for SENSEI

SENSEI provicdestpanvbicepsese mMd)s baark adapt, to co
i nstrumented si mehati ocoamrse. uVBheidc hc abnacltke conf i
simul ati ons vé @an fSIENBrEdbl e anal ysi sadadgapmpetde rf.r oT
Vi sacdmvert he VTK objects providedtkegt SENFZBI C{
then inserted in the Vistle pipelitnoeegiVWhtidre
arbitrary commands this interface Aomiry effeatse
guide on ho&& BEBNBEE VMntelréace is presented i
(see 8Se@ti2on
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3.2 In-situ visualization with PAAKAT

The PAAKAT (fi boking ab) library has been designed as an HPC tool which encourages
scalability and portability of ksitu analysis in largecale simulations. The emphasis is on
reducing such simulatiohsutput data during rutime by using algorithms already available

in VTK. The main difference regarding the great deal of effort made to develop software
specialized on the solution of-situ visualization and analysis is related to the fact that
PAAKAT encourages scalability and portability. This has been done by focusing on data arisen
from VTK filters while it obviates rendering in the ParaVig@8] source code (version 5.6).
Modifications performed in ParaView encouragée wuse of the C++ VTK API. As a
consequence of these modifications, filters must be implemented by using C++ instead of the
Python[24] scripts created by ParaView.

Using the whole ParaView framework, compilation times becamealaissue. Tests on four
nodes of MareNostrum 3 (Barcelona Supercomputing Center, Ja&jnyith a total of 64
cores resulted in a compilation time of about one andfahbals. By obviating rendering and
therefore avoidindhe need of big thirgbarty libraries likePythonand/or OpenGL26], the
compilationtime was reduced to only nine minutes.

A list of the compiler options used to achieve this are shokigare7. These options have
been successfully used in two supercomputers, Be§Kkdw Royal Institute of Technology,
Sweden) and Nord llI[Barcelona Supercomputing Center, Spa#s. future work, more
computer systems and compilers must be tried.

1 cmake PATH/TO/PARAVIEWS5.6/SOURCES \ 15 -DVTK_BUILD_ALL_MODULES_FOR_TESTS=0FF \
2 -DCMAKE_INSTALL_PREFIX=EXECSO1 \ 16 ~-DVTK_Group_Rendering=0FF \

3 -DPARAVIEW_BUILD_QT_GUI=0FF \ 17 -DVTK_Group_StandAlone=0FF \

| ~-DCMAKE_CXX_COMPILER=mpicxx \ 18 =DVTK_Group_MPI=0N \

5 =DCMAKE_C_COMPILER=mpicc \ 19 -DModule_vtkCommonCore=0N \

6 -DCMAKE_Fortran_COMPILER=mpif90 \

7 -DPARAVIEW_USE_ICE_T=0FF \

8 -DPARAVIEW_USE_MPI=0ON \

9 -DBUILD_SHARED_LIBS=0FF \

10 -DVTK_Group_ParaViewRendering=0FF \
11 -DVTK_USE_X=0FF \ -DModule_vtkPVVTKExtensionsDefault=0N \
12 -DVTK_OPENGL_HAS_OSMESA=0FF \ 6 -DPARAVIEW_ENABLE_COMMANDLINE_TOOLS=0FF \
13 -DVTK_OPENGL_HAS_EGL=0FF \ 27 -DPARAVIEW_CURRENT_CS_MODULES=

14 -DModule_vtkIOExport=0FF \

oo

-DModule_vtkFiltersGeneral=0N \
-DVTK_RENDERING_BACKEND=None \
-DPARAVIEW_ENABLE_VTK_MODULES_AS_NEEDED=FALSE \
-DModule_vtkVTKm=0N \
-DModule_vtkAcceleratorsVTKm=0N \

[CR SN CR N
SNSRI o

™

Figure 7: Compiler options for modified ParaView 5.6.

3.2.1 MPMD-VTK example

In this example two codes are run by using the MuHliRregram, MultipleData (MPMD)
programming model while anterpolation procedure is performed.

A given source mesh is used to perform a turbulent simulation, while a principal component
analysis (PCA) is carried out through a destination mesh. Input files for this problem have been
supplied by Christian Gscheal(Fraunhofer SCAI) as part thfe Data Analytics task

The problem can be solved in three main steps. First, interpolation is performed, then the
interpolated data is extracted frdparaView and thereafter used it as input data in the PCA
analysis. By mans of an appropriately compil@@raView the procedure described above can

be performed completely using Python pafaview.simple.Resample.WithDataset,
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paraview.simple.ProgrammableFilterand sklearn.decomposition.PCAor interpolation,
extraction, and nehine learning analysis, respectively).

Now, the parallel irsitu execution of this procedure is usually performed by using the Single
Program, MultipleData (SPMD) programming model in which the same processors execute
numerical simulation and visualizati in a staggered way. This means that they are executed
one after the other. Another option is to execute a MPMD programming model where different
processors are given to simulation and visualization. In this case, simulation and visualization
are indepedent, but extra communication between sets of processors is necessary. While the
MPMD model is widely used in numerical simulations of mplhiysics problems, its effect on
in-situ visualization problems has been recently studied f&gee8). In the problem that is

being tested here, the usage of a MPMD execution could encourage the performance and load
balance of the entire parallel executiGmumerical simulations and -situ). Additionally,
compilation of the codes can be simplified, since codes are independent of each other. This
means that the turbulent flow problem could be simulated using whichever parallel code (with
or without insitu instrumentation) while the analysis could be performed by means of either
C++ or python, and even using either serial or parallel codes.

Simulation Nodes - - Simulation Nodes
5, 5, 3 Ss S5 IS i oo m S S ‘ S ‘ S » S S » S
| v, L v, L Vi L st ‘ v61 Vi 1] 2 3 4 i 9 R o

L‘>/ ] ;arall\d Flle SystAefn Visualization Nodes ——~Parallel File System
S = . , =T
9 S | e Sim Data >

L~ S — \' Y oo Images | —d°°° —
= Ql [ el AT
(a) Representation of the in-line visual- (b) Representation of the in-transit visual-
ization used as part of this study. With ization used as part of this study. With this

this mode, the simulation and visual- mode, the simulation and visualization oper-
ization alternate in execution, sharing ate asynchronously, and each have their own

the same resources. dedicated resources.

Figure 8: Parallel programming models. (a) SingleProgram, Multiple -Data (SPMD) or in-line visualization.
(b) Multiple -Program, Multiple -Data (MPMD) or in -transit visualization [27].

As mentioned above, another interesting point is related to the load b&lauce9 shows the
number of cells and dimensions of the given meshes. By using a standard domain
decomposition method for the distribution of the parallel work in the turbulent flow problem, it
is relativelyeasy to conclude that during the execution of thetinstage most of the processors
could be idle when a SPMD execution model is used.
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Figure 9: Source mesh (blue and greydf 4.67e6 cells and volume of 4.43x4.09x0.%23 . Destination mesh
(red) of 1.25e5 cells and volume of 0.05x0.05x0.{}5] .

In order to overcome this drawback, an example using the MPMD model has been prepared
(seeFigure 10) The setup consists of two different codes, one for the destination mesh and
another for the source mesh. The first one reads the destination meshdsiid pemts to the
sourcecode. Thesecond code reads the source mesh and performs interpolations with data
received from the destination code. Initially both codes are executed at the same time, and once
meshes are read, the destination code sends its points towards the source codee This on
performs the interpolations and sends back the results to the destination code. In the future,
destination code will use the received data to perform the corresponding machine learning
analysis.

ni n2

I e ©
e

Interpolation m
L ide | Analysis |

T

Y

mpirun -np n1 souce_code.x : -np n2 destination_code.x

Figure 10: MPMD execution modelof source code and destination code through nl + n2 processors p.
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3.3 Summary of Visualization Activities

The main focus of the work in task2as beerio put on the development of pgstocessing
tools and workflows for exascale engineering simulatidlest to consulting in visualization
topics and training offerings, the main effort of the visualization task is the development of
scalable imsitu postprocessing tools. New things we bring to the table are interactsieuin
visualization in virtual envinaments and performant-gitu analysis of largscale simulations.

With the presented igitu approaches it is possible to easily couple Vistle with a wide variety

of simulations without the need to implement a speciaitininterfaceThe drawback ishiat

the transformation of data has to be done t\
Li bSim/lSENSEI format and then to Vistleds fo
to control the lifetime of their data, even in the case wheteangformation would be needed,

the data must be copied i nt o-pratess inddetdé SHMp bj e c |
but also in single process mode). On the one hand this can cause a huge memory overhead, but
on the other hand it allows to interadgth the data independently of the simulation.

So far, the coreode that has been successfully rusitn with Vistle was Nek5000 by using
its LibSim interface. In the next phase of the project more core codes viiltdpgated and
measurements of tleverheads will be made.

Similarly, PAAKAT has shown encouraging results forsitu analysis of largscale
simulations. The simple and flexible API made integration into both Nek5000 and Alya
straightforward, demonstrating the potential of PAAKAT asrega insitu toolkit
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4 Task Dlat3a anal ytics

4.1 In-Situ Data Analytics

4.1.1 Software Architecture

Fraunhofer has continued the development of a software framework for the purposéuof in
analysis of CFD data. Some key requirements have been idewtifield are considered during
the implementation:

1 Online and offline application of the toolbox

1 Simple integration with existing ML and UQ libraries

1 Efficient backend based on (parallel) linear algebra libraries
1 Connection to standard-Bitu interfaces andata readers

1 Interactive usemterface based on a client/server setup

The overall concept of the selected architecture is showigurell. For the pirpose of a fast

and flexible development and validation of algorithms, most existing Machine Learning
libraries provide a Python APl and allow an interactive usage through ipython or jupyter servers
[28]. In order to take advaage of existing libraries, this is also a fundamental design strategy
for our software toolbox. The core API follows the definition by sddirn[29] and thus
enhances a simple integration of our code with external methamsa istngle processing
pipeline.

Data Sources Analysis libraries Usability ’ ‘ Applications

a N

Online data
Generated by flow solver:
Nek5000, OpenFOAM

Machine Learning
OpenSource libraries, in-
house code by Fhg SCAl

Interactive Usage
IPython notebooks,
Paraview GUI

/- . .
Machine Learning
Dimension reduction of

flow field, sensitivity

analysis, spatial modes

N O N
Uncertainty

Quantification
uQit by KTH

/
In-Situ UQ

Sample Mean Estimation,
Uncertainties due to changes
in geometry {by KTH)

- AN 2 I AN

Figure 11: Software architecture for in-situ data analysis[30].

Script processing
pvbatch, python scripts,
batch scripts on cluster

Data Readers
Solver specific formats,
VTK, pandas, etc.

Flexible usage based on

application

Catalyst/VTK interfaces
for on- & offline analysis

Python Ul & efficient,
parallel C++ backend

Besides flexibility, efficient implementations of the algorithms are a major requirement in the
context of largescale data analytics. Therefore, we keep the python layer as thin as possible
and build on existing math libraries, e.g. OpenBLAS or MKL, feayy computations. To
further increase efficiency, a hidével parallelization is set up viapi4py[31]. For low level
parallelizations that rely on more intense communications, efforts have been put into the

Project823691 EXCELLERAT Deliverable D4.6 Page29 of 58


























































































