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Executive Summary 

This deliverable reports on the progress and significant achievements in work package 4 of the 

EXCELLERAT project. The work package deals with the development of EXCELLERAT's 

enhanced services; co-design, visualization, data analytics and management, in essence 

developing tools for an application's entire lifecycle. 

The significant achievement in this reporting period has been to formulate prototypes of the 

enhanced services outlined in deliverable D4.2; scalable in-situ visualization workflows for 

both interactive and non-interactive analysis, in-situ data analytics and uncertainty 

quantification frameworks and a newly designed platform for HPC specific transfer and data 

management. These services have been developed and implemented based on use-caseôs needs, 

either using derived model problems or scaled-down formulations of the full use-cases.  

The plans for the remainder of the project are to continue developing the enhanced services, 

advanced past, current prototypes and focus on the integration of the development into the full 

use-cases in EXCELLERAT. 
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1 Introduction 
This document reports on the progress and significant achievements in work package 4 of the 

EXCELLERAT project. The work package deals with EXCELLERATôs enhanced services; 

co-design, visualization, data analytics and management, in essence developing tools for an 

applicationôs entire lifecycle.  

As described in deliverable D4.2 Report on the Service Portfolio, tools and methods developed 

within this work package are derived based on the common needs of EXCELLERATôs use-

cases for solving engineering simulations at scale, as outlined in their so-called user-stories. 

Given the diversity of EXCELLERATôs core-codes, particular focus is laid on formulating 

services which are both code- and application-agnostic, enabling reuse and integration into 

several of the core-codes. Marketable services developed in this work package will be identified 

by work package 1 for inclusion in EXCELLERAT's service portfolio.  

The deliverable is structured as a progress report. Each task in work package 4 give details of 

the work done, and progress towards realising the envisioned services outlined in deliverable 

D4.2 and outline future work for the remainder of the project. 

2 Task 4.1: Co-design 
EXCELLERAT follows an indirect co-design paradigm, wherein Core Partners gain access to 

the early release of state-of-the-art hardware, where this hardware is available typically due to 

a close working relationship between the vendor and the Core Partner. This avoids a direct co-

design paradigm, as vendors typically will not alter their hardware to benefit a small set of 

applications. This indirect co-design paradigm permits EXCELLERAT to exploit trends in 

software and hardware and match them to the code design issues of our Reference Applications 

running our use cases. 

The co-design working group agreed a methodology:   

¶ Firstly, target Reference Applications are chosen.  

¶ Full applications may be reduced to mini-apps, 

o where each mini-app is a small bundle of highly portable source code, with 

example input and output files,  

o which retains the computational characteristics of the full simulation, e.g., 

computational kernels are retained 

Á perhaps key data movements epochs, such as I/O, are retained. 

o This can circumvent irrelevant issues that can arise when porting to novel 

architectures. 

¶ The full code, or mini-app, is then ported to existing hardware or emulators, 

o associated libraries may also need to be installed 

¶ Target simulation is also provided 

o ported code is optimised if time permits 

¶ Initial profiling is then performed to locate kernels of interest,  

¶ Profiling and performance are measured 

o using emerging libraries where possible, 
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¶ Code adaptations and/or improvements are investigated and reported back to owners. 

We have created and managed a Co-Design Working Group, which monitors all co-design 

activities. These activities occur across many other Tasks, specifically,  

¶ T3.1: Node-level performance optimisation,  

¶ T3.2: System-level performance towards exascale, 

¶ T3.4: Test lab for emerging technologies, 

¶ T3.5: Validation and benchmarking suites, 

¶ T4.1: Co-design, 

¶ T4.3: Data analytics,  

¶ T5.5: HPC service provisioning, 

where T4.3 provides key linear algebra routines to test alongside our Reference Applications. 

T3.4 helps locate and document emerging technologies, T5.5 provides access to cutting edge 

platforms or emulators of future platforms, and T3.5 helps to determine bottleneck kernels via 

profiling the reference applications. T3.1 and T3.2 perform the node-level/accelerator tests. 

Lastly, it should be noted that we outsource required effort through our ongoing collaborations 

with the POP CoE [1].  

During the last year, the target Reference Application codes involved in co-design have been 

identified as Alya, AVBP, CODA, Nekbone (Nek5000), and a particular dense linear algebra 

SVD solver from ScaLAPACK, namely pdgesvd, as this is the key routine employed by the 

DMD method, described in Task 4.3 Data Analytics (see Section 4.3).   

Our living document started life as a Word document in our BSCW, but this enforced a 

debilitating single-editor bottleneck, thus the document was moved to our Wiki, which permits 

multiple concurrent editors. 

As planned, as part of our living document, we have a Section containing a crib-sheet for 

authors to prepare their codes for exascale, for portable optimisations that are not tied to any 

particular hardware. This was produced, in collaboration with another CoE, namely 

CompBioMed [2], and is included in both the live working group document on our Wiki and in 

the Appendix of this deliverable (see Section 9.1). 

Finally, we had planned to organise a joint Birds of a feather (BoF) session with ETP4HPC [3] 

at ISCô20; however, this was postponed due to Covid-19. It is planned to hold this BoF session 

at ISCô21 or a virtual workshop in 2021. 

The remainder of this Section describes the novel hardware currently employed by the co-

design working group, along with a high-level overview of the status of each of the participating 

Reference Applications. 

2.1.1 Cutting edge hardware employed to date 

A full list of current hardware available to the CoE and is maintained by Task5.5 is available 

in the wiki.  Regarding co-design, the hardware involved to date are as follows:   
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Á AMD 

Á AMD EPYC cluster at TGCC (Très Grand Centre de calcul du CEA) [4].  

Á AMD CPU and GPU clusters at DLR  

Á ARM 

Á ARM Cavium ThunderX2 cluster from HPE at EPCC [5]. 

Á ARM Marvell ThunderX2 and Nvidia Tesla GPUs, ARMIDA, from EPI at E4 

[6]. 

Á ARM thunderx2 cluster at TGCC (Très Grand Centre de calcul du CEA) [4].  

Á HPE SGI 

Á GPU cluster, JEANZAY system at IDRIS [7]. 

Á Huawei 

Á Huawei ñhi 6474 early siliconò cluster, JUAWEI, from EPI at Jülich 

Supercomputing Centre. 

Á IBM 

Á Power9 plus NVIDIA Volta GPUs, Marconi100, at CINECA [8]. 

Á Power9 + GPUs Cluster, CTE,  at BSC [9]. 

Á Intel 

Á Intel CPU cluster, Galileo, at CINECA [10].  

Á Lenovo NeXtScale platform, featuring Intel Xeon Skylake (SKL) processors, 

Marconi A3 partition, at CINECA [11]. 

Á NEC 

Á SX-Aurora Vector Machine at HLRS [12].  

Á Xilinx  

Á Xilinxôs Alveo U280 FPGA cluster at EPCC [13]. 

2.2 Alya/BSC 

In this second year we have focused in comparing the OpenACC and CUDA implementations 

to measure the additional performance that is available by using a lower level implementation 

strategy. These experiments have been carried out on tailored mini-apps generated to reproduce 

the assembly and linear solver phases of the time-integration.  

Despite the better performance obtained with the low-level optimal kernels, those are not our 

preferred option because they complicate the maintenance and further development of the code, 

especially on the parts of the code related with discretization and modelling methods, such as 

turbulence models, which are maintained by application scientists rather than computer 

scientist. Nonetheless, this study provides us a sort of ideal performance reference for the GPU 

version of the code. 
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POWER 9 + NVIDIA V 100 cluster 

We tested our new min-app on the POWER9 CTE cluster of the Barcelona Supercomputing 

Center. This platform has an architecture similar to the Summit supercomputer, but with 4 

GPUs instead of 6 GPUs per node. For the mini-app related with the assembly phase, the 

benefits of the low-level implementation were not only caused by a better tuning of the 

implementation but also an element-specific implementation. As a consequence, speedups of 

up to 2x were obtained. For the algebraic solver, the element-specific factor was not present, so 

the low-level implementation outperforms the directives-based approach only by 15%. 

For more information on this work, and others outlined below, please see D3.2 Report on Exa-

Enabling Enhancements and Benchmarks, and the Section on T3.4 Test Lab for Emerging 

Technologies. 

Plans for the next 12 months 

- Test Alya on new pre-exascale EuroHPC architectures 

- Test Alya on novel ARM CPUs 

Alya on FPGAs 

We are currently working on porting Alya to FPGAs and as an initial step have performed some 

focussed experimentation. This has enabled us not only to identify the most time intensive 

kernel of the code, but furthermore to understand whether it is likely to be of benefit on the 

FPGA or not. 

We found that the nsi_element_operations_fast kernel accounts for around 78% of the runtime 

with one of the standard test-cases which models a sphere and contains 16 million elements. 

This kernel is called for every single element, and constructs the matrix of equations that will 

then be solved. Whilst the individual executions of the functions are quick, the fact that it is 

executed so frequently accounts for such a significant runtime (around 90 seconds for every 

element which is performed twice per timestep). We profiled this using the PAPI library and a 

tool to interpret these results that has been developed as part of EXCELLERAT, which 

performs analysis on the performance counters and generates a focussed report of metrics that 

are important to HPC codes, and the summary is illustrated in Figure 1. 

This profile is for the specific, nsi_element_operations_fast, subroutine and it is telling us that 

on average the routine is providing 1.54 GFLOP/s performance, which is very low, with the 

CPU Floating Point Units (FPUs) at less than 50% occupancy. Furthermore, the CPU is stalling 

for over 10% of the time (doing no work) and most of this (7.6% of all cycles) are due to 

memory stalls where the CPU has to wait for data to be made available. Furthermore, there is 

an imbalance of instructions, where for every floating-point calculation there are approximately 

two data reads. Whilst it is still fairly early on this work, we believe that this summary means 

that there is potential here for FPGA acceleration, whereby reworking the kernel as a dataflow 

algorithm we can significantly improve the FPU occupancy and reduce the number of overall 

stalls. We can also significantly increase the amount of floating-point capability, and it can be 

seen that currently the CPU is not vectorising these properly (only one single floating-point 

operation per FPU per cycle, rather than the 8 that it is theoretically capable of.) There are a 

number of dependency issues within the algorithm that need to be addressed to port onto the 
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FPGA.- This is our current area of focus, and from this early study we think it is fairly likely 

that the technology will show some benefit. 

 

2.3 AVBP/CERFACS 

The original ABVP mini-app was based on the initial use cases of this CoE. However, to 

account for the dynamic mesh adaptation structure, since the beginning of project 80% of the 

source code of ABVP was rewritten. Hence, the original mini-app no longer reflects the main 

code and can no longer be used. 

Total number of calls: 30 (30 profiled) and 1 dynamic memory allocations 

Number of counter updates: 30 (30 possible, 100.0%) 

Total execution time 2108.94 seconds, total number of billion cycles 7767.21 

-------------------------------------- 

89.08% of cycles issued uop for execution, 77.58% cycles retired a uop 

 

Average MIPs of 11147.56 and 0.0 single MFLOP/s and 1540.12 double MFLOP/s 

     Total number of single precision MFLOP: 0.0 (N/A% 256B, N/A% 128B, N/A% scalar) 

     Total number of double precision MFLOP: 3248029.72 (0.0% 256B, 0.0% 128B, 100.0% scalar) 

     FPU occupancy: 41.82% 

 

Total data read from DRAM 230829.58 MB, with 80480.12 MB on L3 miss 

     Memory load operations that hit in L1: 99.61% and 0.19% missed 

     Memory load operations that hit in L2: 0.15% and 0.04% missed 

     Memory load operations that hit in L3: 0.02% and 0.02% missed 

     Memory load operations that hit in FB: 0.22% and 0.02% went to DRAM 

     Prefetcher performance: 

          Hit in L2 cache 66.57% 

          Missed in L2 cache 33.43% 

          Evicted without being used (useless) 1.25% 

     Ratio between FP and read instructions: 0.55 

     Ratio between load and store instructions: 2.23 

 

Cycles stalled 10.9% and 7.6% with memory access outstanding 

     Cycles stalled with L1D miss 4.13% 

     Cycles stalled with L2 miss 4.05% 

     Cycles stalled with L3 miss 3.43% 

 

Figure 1: Profile of Alya running on a FPGA. 
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Now that AVBP 7.7 has been released with GPU support, we will re-evaluate this position and 

see if we can extract a new mini-app. However, to date, a mini-app has not been required due 

to AVBPôs ease of portability. 

 

ARM cluster 

AVBP has been tested on the INTI cluster at TGCC, FULHAME cluster at EPCC and JUAWEI 

cluster at JSC from EPI (hi 6464 Huawei early silicon). Performance is on track with current 

user experience on x86 clusters but is highly dependent on the compiler vendor and compiler 

version. Partial results can be found here [14] and consolidated results will be published in 

2021. 

AMD cluster 

AVBP has been ported and tested up to 132k cores in the PRACE system IRENE from TGCC 

equipped with EPYC 2 AMD processors with near perfect scaling. See Figure 2, which shows 

strong scaling of AVBP on IRENE, for both an explosion simulation (circles) and a turbulent 

channel simulation (triangles) versus ideal acceleration. Access to the HLRS cluster (Hawk) 

has not been granted yet as the machine was delayed.  

 

Figure 2: AVBP strong scaling on IRENE, for explosion and a turbulent simulations. 

 

Power9+GPU clusters 

Access to the CTE IBM Power9 system from BSC equipped with V100 GPUs is still pending.  

Nvidia GPU cluster 
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CERFACS has been granted an early access to the new GPU partition on the JEANZAY system 

(Tier 1 - IDRIS) in France with 300k CPU hours to optimise and perform the aeronautical 

combustion chamber use Case. We are working jointly with IDRIS, HPE and Nvidia on the 

optimisation of the code for this activity. 

For the plans for the next 12 months 

¶ Optimisation of AVBP on V100 and test on A100 GPUs 

¶ Test AVBP on RISC-V in collaboration with EPI.  

¶ Test AVBP on Fujitsu A64FX ARM based processors  

¶ Test AVBP on AWS Graviton ARM based processors  

2.4 CODA/DLR 

To test CODA's computational kernel on novel architectures and accelerators a mini-app has 

been created, thereby removing the need to adapt the entire workflow of CODA. This mini-app 

contains a set of representative benchmarks that evaluate the Sparse Linear Systems Solver 

library (Spliss), which runs CODAôs computationally intensive linear solver. 

GPU cluster 

The work carried out focused on the porting of Spliss to GPUs, which has been achieved. After 

DLRôs GPU cluster was put into operation during this period, first performance results of Spliss 

on GPUs were evaluated and up to 25x runtime improvement for initial benchmarks was 

achieved. Currently, Spliss is extended to support the efficient usage of multiple GPUs per 

compute node. Spliss is now ready to be used by CODA, whereas the computation in the linear 

solver can be transparently switched between CPU and GPU. Upcoming work will focus on 

testing and evaluating the entire workflow of CODA with the linear solver running on GPUs. 

AMD cluster 

After DLRôs new AMD HPC cluster CARA went operational in February 2020, CODA and the 

surrounding workflow were installed and intensively tested. After identifying the ideal hybrid 

setup and adapting all workflow components to CARA, efforts were focused on evaluating the 

scalability of CODA on CARA using the EXCELLERAT use cases C6U1 and C6U2. The use 

case solves the Reynolds-averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras 

turbulence model in its negative form (SA-neg). It uses finite volume spatial discretization with 

an implicit Euler time integration. The input of the use case is an unstructured prism mesh from 

the NASA Common Research Model (CRM) with about 5 million points and 10 million volume 

elements. The mesh is a rather small mesh chosen for strong scalability analysis of CODA at 

reasonable scales. Production meshes are at least 20 times larger and accordingly achieve a 

good efficiency on much higher scales. For the small mesh, the use case achieves about 60% 

parallel efficiency on the largest available partition on CARA with 512 nodes and 32,768 cores. 

After getting access to DLRôs new AMD HPC system CARA based on AMDôs EPYC 

architecture and an Intel Cascade Lake test system during the period, both systems were 

evaluated with the use case. The initial results were compared, and we identified the ideal 

hybrid MPI-OpenMP setup for both architectures. Furthermore, we found a limitation in the 

AMD EPYC architecture that limits the efficient hybrid usage to four OpenMP threads per MPI 
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one. There is currently no plan to publish more on this result. This restricts CODAôs hybrid 

capabilities and, thus, also its scalability since CODA relies on using as many OpenMP threads 

per MPI rank as possible. The Intel Cascade Lake architecture did not impose those limitations. 

2.5 Nekbone (Nek5000)/CINECA,KTH,UEDIN 

The Reference Application Nek5000 has a mini-app entitled Nekbone [15] which is used for 

co-design. 

2.5.1 FPGA at EPCC 

Work was undertaken exploring the role of FPGAs to accelerate Nekbone, both in terms of 

performance and also power efficiency. This was undertaken using Xilinxôs latest Alveo U280 

FPGA, and comparisons were made against a 24-core Intel Xeon Platinum Cascade Lake CPU 

and NVIDIA V100 GPU. Details around the optimisations' steps are provided in D3.2 Report 

on Exa-enabling enhancements and benchmarks and explored in depth in [16]. 

The table below (Table 1) contains performance and energy efficiency comparison of multiple 

kernels against other technologies, and illustrates a summary of results achieved. Running over 

all 24 CPU cores resulted in an energy efficiency of 0.37 GFLOPS/Watt. For comparison, we 

also include a single core CPU run, which resulted in 5.38 GFLOPS and energy efficiency of 

0.08 GFLOPS/Watt. GPU performance was 407 GFLOPS and, due to the high performance, an 

energy efficiency of 2.34 GFLOPS/Watt. The GPU's performance is impressive, although it 

should be noted that the bespoke GPU acceleration in Nekbone has been developed and tuned 

over many years and GPU generations. 

Description Performance 

(GFLOPS) 

Power usage (Watts) Power Efficiency 

(GFLOPS/Watt) 

1 core of CPU 5.38 65.16 0.08 

24 cores of CPU 65.74 176.65 0.37 

V100 GPU 407.62 173.63 2.34 

1 FPGA kernel 74.29 45.61 1.63 

2 FPGA kernels 146.94 52.47 2.80 

4 FPGA kernels 289.02 71.98 4.02 

Table 1: Performance and energy efficiency comparison of FPGA kernels [16]. 

One of our FPGA kernels draws 45.61 Watts (the FPGA idle with the bitstream loaded draws 

39 Watts), and whilst the energy efficiency of 1.63 GFLOPS/Watt of a single kernel is 

significantly higher than the CPU, it is somewhat disappointing when compared against the 

GPU.  

However, the advantages of FPGAs start to become more apparent as we scale the number of 

kernels. We can fit up to four of our kernels on the U280, and at this configuration we achieve 
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289 GFLOPS. This is over four times the performance of the 24 core CPU, and 71% of the 

performance of the V100 GPU. The energy consumption of four kernels is 72 Watts and it can 

be observed that, on average, adding an extra kernel requires approximately an additional 7 

Watts, with a performance increase close to 74 GFLOPS per kernel. With four kernels, the 

energy efficiency is over 4 GFLOPS/Watt, which is significantly higher than that of the GPU. 

Therefore, whilst best performance of the FPGA vs GPU still favours the GPU (although it is a 

tough test), energy-efficiency-wise there are significant advantages of using FPGAs.  

2.5.2 HPC architectures at CINECA and E4 

Nekbone has been compiled on four different classes of system reported below for both 

compiler-specific and compiler-independent tuning. The four systems are as follows: 

Galileo cluster (CINECA).  

1000 Intel Broadwell nodes (2x18-core Intel Xeon), and OmniPath interconnection, plus 60 

nodes equipped with K80 Nvidia accelerators and 2 with V100 Nvidia accelerators. 

Marconi A3 partition (CINECA):  

Lenovo NeXtScale platform, featuring Intel Xeon Skylake (SKL) processors, with a peak 

performance of about 20 PFLOP/s.  

Marconi100 (CINECA)  

980 nodes; each node is equipped with 2x16 cores IBM POWER9 AC922 plus 4 NVIDIA Volta 

V100 GPUs, all connected with a high-speed internal network Mellanox InfiniBand EDR 

DragonFly+.  

ARMIDA (E4)  

ARM Infrastructure for the Development of Applications cluster, located at E4 Computer 

Engineeringôs premises, with 8 Marvell TX2 compute node, each with 64 Marvell TX2 cores 

and a number of Nvidia Tesla V100. 

Nekbone has run with 100 CG (Conjugate Gradient) iterations, polynomial degree 9 and for 10 

GLL points in each dimension. The reference test is ñexample2ò from the official repository 

[17]. It runs without the multigrid preconditioner and without user-provided decompositions of 

the processor counts and the elements 

Figure 3 below shows the weak scaling, by keeping constant the number of elements per core 

(128), with the different architectures listed in the legend. Using a patch about MPI tag misuse 

in the code, Nekbone ran well over 152,160 cores on Marconi A3, with a peak performance 

of 35,9 TFLOP/s, using OpenMPI (3.0). 
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Figure 3: Nekbone weak scaling on various CPU clusters. 

 

Figure 4 below shows the weak scaling on Marconi100 using the full machine. The best 

performance has been achieved recently at 835 TFLOP/s (near Petascaling performance) in 

OpenACC configuration, out of a total of 3792 GPUs, with a weak scaling on a full machine. 

 

Figure 4: Weak scaling of Nekbone on Marconi100. 
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2.5.3 SX-Aurora at HLRS (KTH) 

KTH has started to port and tune the entire spectral element code Nek5000 to the SX-Aurora 

TSUBASA system at HLRS. Compared to heterogeneous computing platforms, SX-Aurora 

offers a friendlier programming model, with a native execution mode, allowing a developer to 

use the full potential of the system without having to deal with the complexities of 

heterogeneous systems. However, good performance is only achieved if the code vectorizes 

well.  

The experience of porting and tuning Nek5000 on GPUs helped us to formulate suitable loop 

transformations for increased vectorization and work per iteration throughout the code. In key, 

compute-intensive kernels, the transformations achieved 40% of the theoretical peak 

performance of a single SX-Aurora core. Figure 5 shows the performance of the Nekbone mini-

app running on three different hardware architectures, SX-Aurora, two Intel E5-2698v3 CPUs 

and a Nvidia P100 GPU. Using all eight cores, Nekbone achieved close to 10% of the SX-

Auroraôs peak performance compared to the 5.5% of peak performance achieved for the Nvidia 

P100 GPU. The porting and tuning efforts will be presented in a paper accepted for HPCAsia 

2021 [18] . 

 

Figure 5: Performance of Nekbone running on three different hardware architectures. 

2.6 ScaLAPACK/RWTH 

The target ScaLAPACK routine, namely the singular value decomposition routine pdgesvd, has 

yet to be developed into a mini-app, and is scheduled to occur over the coming months, along 

with extending the functionality of the DMD algorithm (See T4.3 Data Analysis, Section 4.3). 

Once the mini-app will be ready, we will start with profiling analysis and performance 

measurements on the various systems and architectures available at CINECA, starting with the 

Intel-based Tier-1 cluster 
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2.7 Summary of Co-Design Activity 

The WP-transversal co-design working group and the co-design task (Task4.1), have 

contributed to EXCELLERATôs Advanced Services.  On the software co-design side, based on 

the reference codes and other relevant applications and libraries of the engineering workflow, 

the operations, kernels and algorithmic features are characterized that are common and widely 

used in engineering applications and which demand large amounts of computational time. On 

the hardware side we are cooperating via its interest groups with original equipment 

manufacturers and system integrators considering the complete hardware bandwidth from 

standard x86_64 architectures to ARM CPUs, GPUs, NEC Vector processors down to FPGAs. 

Thanks to our efforts over the last year, we now have an agreed methodology to follow, wherein 

the clientôs application (or mini-app) are ported to our collection of cutting edge HPC platforms, 

and the required code-adaptations are then fed back to the client. 

To date, we have exercised our nascent co-design service using CoE members.  As such, our 

clients have been our own Reference Applications owners. Five applications have been 

considered for our co-design service, where two of these have mini-app versions, and a third 

mini-app is on the horizon. Four of the applications have now been ported to a number of novel 

machines, including CPU clusters, GPU clusters, and a FPGA cluster, and initial results have 

been highly promising. The act of porting was either performed by the owners themselves or, 

for two of the applications, by CoE members at other core partner sites.  For the latter case, the 

required code-adaptations were fed back to the code owners where. 

Finally, it is important to note that, given the success of our period of testing, we are proud to 

announce that the EXCELLERAT CoE now provides consulting for software and systems co-

design. This service is now live, and available within the Co-Design Engineering Software- and 

System-Design service. See the Reports on the Service Portfolio, deliverables D4.2 and D1.6 

for a more detailed description. 
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3 Task 4.2: Visualization 
To focus I/O on a manageable level and to supervise simulations during runtime, the main goal 

of this task is the enablement of in-situ post-processing capabilities in selected applications. 

One tool chosen for this purpose is Vistle [19] for which two in-situ interfaces have been 

developed. The first one is the LibSim interface used by VisIt [20] as outlined in D4.2. The 

second interface is obtained via the SENSEI [21] framework. In D4.2 we described an approach 

made using Catalyst [4], but this was abandoned. This decision was made because SENSEI 

follows a similar approach as Catalyst in terms of the simulation data adapter but also provides 

an interface for post-processing backends like Vistle and is, therefore, more flexible. In this 

project, a backend adapter for Vistle was developed. 

While Vistle is focused on interactive visualization in 3D virtual environments, the other post-

processing tool developed in this project is a High-Performance Computing analysis tool 

(PAAKAT). This tool allows a straightforward real-time handling of data arisen from 

simulations with pre-configured algorithms based on the Visualization Toolkit (VTK) [22].  

3.1 Interactive in-situ visualization with Vistle 

Vistle implements a modular architecture, where every data/-source, -filter or -sink in the post-

processing pipeline is represented as a Vistle module. In multi-process mode, these modules 

run as separate processes, that communicate and share their data via shared memory (SHM). 

Therefore, to retrieve data from simulations, the data must be copied to a Vistle-controlled SHM 

segment. 

In single-process mode all modules run in a separate thread of the single main process. In this 

mode data objects are passed on directly via pointers. This would theoretically allow direct 

usage of simulation data, but practically Vistleôs internal data representation is not yet suitable 

for input of outside of Vistle allocated data. Also, these threads use MPI independently, 

MPI_Init_thread with MPI_THREAD_MULTIPLE is required. Running Vistle, in single-

process mode, coupled with a simulation, requires the simulation to initialize its MPI 

environment accordingly. 

A connected simulation is represented in the Vistle pipeline as a regular Vistle module, as shown 

in Figure 6. These modules only request simulation data for the connected data ports and in 

configurable intervals. Therefore, only the requested data is converted and passed to the Vistle 

pipeline. These connections, the following pipeline modules, as well as the in situ-modulesô 

parameters can be changed during the run-time of the simulation to provide maximal flexibility. 

The cost of this flexibility is the necessity of transforming and copying the simulation data into 

Vistleôs representation. While the computational overhead is expected to be rather small, the 

memory overhead can be huge, especially if multiple time steps are kept for visualization.   
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Figure 6: Connected LibSimController -module. 

 

3.1.1 LibSim interface for Vistle 

The LibSim interface consist of a small library that is statically linked to simulation codes. The 

simulation uses this library to pass data retrieving callbacks to the post-processing back-end. 

The interface passes around raw data-array pointers and therefore avoids VTK. Once such a 

simulation starts, it uses a connection socked that waits for the back-end to connect. After the 

connection, the static library dynamically loads a run-time library. This is where Vistle 

intervenes through replacing VisItôs libsimV2 runtime library with an own implementation. 

This dynamically linked library manages the communication with the Vistle module and the 

data conversion from LibSim to Vistle. A brief user guide on how to use Vistleôs LibSim 

interface is presented in the Appendix of this deliverable (see Section 9.2.1). 

3.1.2 Vistle post-processing backend for SENSEI 

SENSEI provides an interface, that post-processing back-ends can adapt, to connect to SENSEI 

instrumented simulations. Which back-ends are used can be configured at the start of a 

simulation via SENSEIôs configurable analysis adapter. The SENSEI interface adapted from 

Vistle converts the VTK objects provided by SENSEI simulations to Vistle-objects, which are 

then inserted in the Vistle pipeline. While the LibSim interface allows simulations to register 

arbitrary commands this interface only features the basic run and pause commands. A brief user 

guide on how to use Vistleôs SENSEI interface is presented in the Appendix of this deliverable 

(see Section 9.2.2). 

Simulation data

Commands
providedby the
simulation

Module parameter
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3.2 In-situ visualization with PAAKAT 

The PAAKAT (ñLooking atò) library has been designed as an HPC tool which encourages 

scalability and portability of in-situ analysis in large-scale simulations. The emphasis is on 

reducing such simulations' output data during run-time by using algorithms already available 

in VTK. The main difference regarding the great deal of effort made to develop software 

specialized on the solution of in-situ visualization and analysis is related to the fact that 

PAAKAT encourages scalability and portability. This has been done by focusing on data arisen 

from VTK filters while it obviates rendering in the ParaView [23] source code (version 5.6). 

Modifications performed in ParaView encourages the use of the C++ VTK API. As a 

consequence of these modifications, filters must be implemented by using C++ instead of the 

Python [24] scripts created by ParaView. 

Using the whole ParaView framework, compilation times became a real issue. Tests on four 

nodes of MareNostrum 3 (Barcelona Supercomputing Center, Spain) [25] with a total of 64 

cores resulted in a compilation time of about one and a half hours. By obviating rendering and 

therefore avoiding the need of big third-party libraries like Python and/or OpenGL [26], the 

compilation time was reduced to only nine minutes. 

A list of the compiler options used to achieve this are show in Figure 7. These options have 

been successfully used in two supercomputers, Beskow (KTH Royal Institute of Technology, 

Sweden) and Nord III (Barcelona Supercomputing Center, Spain). As future work, more 

computer systems and compilers must be tried. 

 

Figure 7: Compiler options for modified ParaView 5.6. 

3.2.1 MPMD-VTK example 

In this example two codes are run by using the Multiple-Program, Multiple-Data (MPMD) 

programming model while an interpolation procedure is performed. 

A given source mesh is used to perform a turbulent simulation, while a principal component 

analysis (PCA) is carried out through a destination mesh. Input files for this problem have been 

supplied by Christian Gscheidle (Fraunhofer SCAI) as part of the Data Analytics task. 

The problem can be solved in three main steps. First, interpolation is performed, then the 

interpolated data is extracted from ParaView, and thereafter used it as input data in the PCA 

analysis. By means of an appropriately compiled ParaView, the procedure described above can 

be performed completely using Python (paraview.simple.Resample.WithDataset, 
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paraview.simple.ProgrammableFilter, and sklearn.decomposition.PCA for interpolation, 

extraction, and machine learning analysis, respectively). 

Now, the parallel in-situ execution of this procedure is usually performed by using the Single-

Program, Multiple-Data (SPMD) programming model in which the same processors execute 

numerical simulation and visualization in a staggered way. This means that they are executed 

one after the other. Another option is to execute a MPMD programming model where different 

processors are given to simulation and visualization. In this case, simulation and visualization 

are independent, but extra communication between sets of processors is necessary. While the 

MPMD model is widely used in numerical simulations of multi-physics problems, its effect on 

in-situ visualization problems has been recently studied (See Figure 8). In the problem that is 

being tested here, the usage of a MPMD execution could encourage the performance and load 

balance of the entire parallel execution (numerical simulations and in-situ). Additionally, 

compilation of the codes can be simplified, since codes are independent of each other. This 

means that the turbulent flow problem could be simulated using whichever parallel code (with 

or without in-situ instrumentation) while the analysis could be performed by means of either 

C++ or python, and even using either serial or parallel codes. 

 

Figure 8: Parallel programming models. (a) Single-Program, Multiple -Data (SPMD) or in-line visualization. 

(b) Multiple -Program, Multiple -Data (MPMD) or in -transit visualization [27]. 

As mentioned above, another interesting point is related to the load balance. Figure 9 shows the 

number of cells and dimensions of the given meshes. By using a standard domain 

decomposition method for the distribution of the parallel work in the turbulent flow problem, it 

is relatively easy to conclude that during the execution of the in-situ stage most of the processors 

could be idle when a SPMD execution model is used. 
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Figure 9: Source mesh (blue and grey) of 4.67e6 cells and volume of 4.43x4.09x0.22 ╬□. Destination mesh 

(red) of 1.25e5 cells and volume of 0.05x0.05x0.05 ╬□. 

In order to overcome this drawback, an example using the MPMD model has been prepared 

(see Figure 10) The setup consists of two different codes, one for the destination mesh and 

another for the source mesh. The first one reads the destination mesh and sends its points to the 

source-code. The second code reads the source mesh and performs interpolations with data 

received from the destination code. Initially both codes are executed at the same time, and once 

meshes are read, the destination code sends its points towards the source code. This one 

performs the interpolations and sends back the results to the destination code. In the future, 

destination code will use the received data to perform the corresponding machine learning 

analysis. 

 

Figure 10: MPMD execution model of source code and destination code through n1 + n2 processors p. 
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3.3 Summary of Visualization Activities 

The main focus of the work in task 4.2 has been to put on the development of post-processing 

tools and workflows for exascale engineering simulations. Next to consulting in visualization 

topics and training offerings, the main effort of the visualization task is the development of 

scalable in-situ post-processing tools. New things we bring to the table are interactive in-situ 

visualization in virtual environments and performant in-situ analysis of large-scale simulations.  

With the presented in-situ approaches it is possible to easily couple Vistle with a wide variety 

of simulations without the need to implement a special in-situ interface. The drawback is that 

the transformation of data has to be done twice, once from the simulationôs representation to 

LibSim/SENSEI format and then to Vistleôs format. Because Vistleôs data objects are designed 

to control the lifetime of their data, even in the case where no transformation would be needed, 

the data must be copied into Vistleôs object representations (in multi-process mode to SHM, 

but also in single process mode). On the one hand this can cause a huge memory overhead, but 

on the other hand it allows to interact with the data independently of the simulation. 

So far, the core-code that has been successfully run in-situ with Vistle was Nek5000 by using 

its LibSim interface. In the next phase of the project more core codes will be integrated, and 

measurements of the overheads will be made. 

Similarly, PAAKAT has shown encouraging results for in-situ analysis of large-scale 

simulations. The simple and flexible API made integration into both Nek5000 and Alya 

straightforward, demonstrating the potential of PAAKAT as a general in-situ toolkit. 
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4 Task 4.3: Data analytics 

4.1 In-Situ Data Analytics 

4.1.1 Software Architecture  

Fraunhofer has continued the development of a software framework for the purpose of in-situ 

analysis of CFD data. Some key requirements have been identified which are considered during 

the implementation: 

¶ Online and offline application of the toolbox 

¶ Simple integration with existing ML and UQ libraries 

¶ Efficient back-end based on (parallel) linear algebra libraries 

¶ Connection to standard in-situ interfaces and data readers 

¶ Interactive user-interface based on a client/server setup 

The overall concept of the selected architecture is shown in Figure 11. For the purpose of a fast 

and flexible development and validation of algorithms, most existing Machine Learning 

libraries provide a Python API and allow an interactive usage through ipython or jupyter servers 

[28]. In order to take advantage of existing libraries, this is also a fundamental design strategy 

for our software toolbox. The core API follows the definition by scikit-learn [29] and thus 

enhances a simple integration of our code with external methods into a single processing 

pipeline.  

 

Figure 11: Software architecture for in-situ data analysis [30]. 

Besides flexibility, efficient implementations of the algorithms are a major requirement in the 

context of large-scale data analytics. Therefore, we keep the python layer as thin as possible 

and build on existing math libraries, e.g. OpenBLAS or MKL, for heavy computations. To 

further increase efficiency, a high-level parallelization is set up via mpi4py [31]. For low level 

parallelizations that rely on more intense communications, efforts have been put into the 




























































