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Introduction 
Running high performance workloads on Field Programmable Gate Arrays (FPGAs) has been explored 
but is yet to demonstrate widespread success. Software developers have traditionally felt a significant 
disconnect from the knowledge required to effectively exploit FPGAs, which included the esoteric pro-
gramming technologies, long build times, and lack of familiar software tooling. Furthermore, for the 
few developers that invested time and effort into FPGAs, from a performance perspective the hard-
ware historically struggled to compete against latest generation CPUs and GPUs when it came to Float-
ing Point Operations per Second (FLOPS). 

In addition to significant developments in FPGA hardware of the past several years, there have also 
been large improvements in the software eco-system. High Level Synthesis (HLS) is a key aspect, not 
only enabling developers to write code in C or C++, and for this to be synthesised down to the under-
lying Hardware Description Language (HDL), but also allowing for programmers to reason about their 
code on the FPGA at the algorithmic level. Moreover, AMD Xilinx and Intel, who are the two major 
FPGA vendors, have built a software environment around HLS, Vitis and Quartus Prime respectively. 
This not only automates lower level aspects but also provides some profiling and debugger support. 
Whilst significant advances, such developments are not a silver bullet in enabling easy exploitation of 
the technology, not least because whilst the tooling is reliably able to generate correct code, if such 
programs are still based upon the CPU code then this is seldom fast.  

Consequently programmers must adopt a different style of programming when it comes to FPGAs, and 
an important question is whether FPGAs can follow the same trajectory in the HPC community as GPUs 
have over the past 15 years, from highly specialist hardware that demonstrates promise for a small 
number of applications, to widespread use. If such is to occur, then not only is support and leadership 
required from the FPGA community, but furthermore two general questions must be strongly an-
swered, firstly why would one ever choose to accelerate their HPC application on an FPGA compared 
to other hardware? and secondly how can we best design our high performance FPGA codes algorith-
mically so that they are fast by construction? 

In this white paper we use the lessons learnt during the EXCELLERAT CoE to explore these two ques-
tions and use five diverse HPC kernels to drive our discussion. These are: 

• MONC PW advection kernel which calculates the movement of quantities through the air due 
to kinetic forces. MONC is a popular atmospheric model in the UK and advection represents 
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around 40% of the runtime. It is stencil based and was previously ported to the AlphaData 
ADM8K5 in [1] and [2], and an Alveo U280 in [3]. 

• Nekbone AX kernel which applies the Poisson operator as part of the Conjugate Gradient (CG) 
iterative method. Nekbone is a mini-app which represents the principal computational struc-
ture of the highly popular Nek5000 application [4], and is also representative of many other 
Navier Stokes based workloads. This has been ported to both the Xilinx Alveo [5] and Intel 
Stratix FPGAs [6]. 

• Alya incompressible flow matrix assembly engine which accounts for around 64% of the 
model runtime for Alya benchmarks. Alya itself is a high performance computational mechan-
ics code used to solve complex coupled multi-physics, multi-scale, and multi-domain problems 
and used extensively in industrial engineering simulation. This incompressible flow engine was 
ported to the Alveo U280 in [7]. 

• Himeno benchmark which measures the performance of a linear solve of the Poisson equation 
using a point-Jacobi iterative method. A popular benchmark, it has been ported to Xilinx Alveo 
U280 [8]and Intel [9] FPGAs . 

• Credit Default Swap (CDS) engine used for calculating financial credit risk. Based on the indus-
try standard Quantlib CPU library, we have ported this engine to the FPGA [10]. Furthermore, 
Xilinx have developed an open source version in their Vitis library [11]. 

Why FPGAs for HPC engineering codes? 
Why would one ever choose to accelerate their HPC application on an FPGA compared to other hard-
ware is a simple but critically important question that the community must answer. HPC developers 
already know, generally speaking, what sort of code properties lend themselves to running on CPUs or 
GPUs, and if FPGAs are to become more widespread in HPC then knowledge about exactly what sort 
of codes they suit, and benefits can deliver must be understood. Whilst modern FPGA hardware can 
provide a respectable level of floating point performance via the on-chip components known as Digital 
Signal Processing (DSP) slices, realistically the continual advances made in GPU and CPU technologies 
means that if one's code is computationally bound, then FPGAs will likely fall short of the performance 
delivered by these other technologies and as-such are not the best option. 

There are, in our view, four major benefits to using FPGAs for HPC workloads from the perspective of 
the applications developer: 

• Non-compute bound codes, where the code on the CPU is bound by either fetching from 
memory and/or other stalls by the micro-architecture. 

• Performance predictability, where due to the lack of a black-box micro-architecture, the pro-
grammer can far more easily determine the realistic theoretical performance that their code 
should deliver 

• Power efficiency, where the lower clock frequency and lack of hardware infrastructure com-
mon on other technologies, results in significantly reduced power draw. This is summarised 
for our case studies in Table 1 with more information in [3], [5], [6], [8], and [10]  available for 
interested readers. 

• Efficient handling of smaller problem sizes, where research [12] has shown that FPGAs can be 
especially competitive against other architectures for smaller problem sizes. This can signifi-
cantly help with strong scaling, with FPGAs still providing performance where other architec-
tures would already be experiencing diminishing returns due to overheads. 
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Non-compute bound codes 
A significant proportion of HPC codes are, to some extent, bound by the fact that the compute units 
cannot be continually fed with data. Whilst there are numerous causes, for our purposes, it is enough 
to categorise these as memory stalls and other micro-architecture stalls. The former is where memory 
access, typically via DRAM, on is a bottleneck and data cannot be fetched fast enough. Such is due to 
one or both of exhausting external memory bandwidth and/or application memory access patterns 
which make poor use of the cache. Conversely, micro-architecture stalls represent situations where 
the backend slots of the CPU cannot remain adequately filled and can be caused by a variety of issues 
including heavy branch prediction misses, a lack of independent instructions to run concurrently, or 
exhausting non-floating point execution units. 

CPU and GPU technologies attempt to tackle these issues in different ways, but the fixed general pur-
pose nature of such architectures impose limits, which is where FPGAs can potentially provide an im-
portant benefit for HPC. The reconfigurable nature of FPGAs means that we can often arrange the logic 
in such a way to minimise such stalls. Taking memory stalls are an example, FPGAs enable a bespoke 
memory mechanism at the kernel level to be adopted which fully suits the application in question. It 
is important to stress that we are not talking about developing bespoke memory controller IP blocks 
here, but instead the programmer specialising their HLS application level code to pipeline data access 
most effectively by utilising the appropriate on-chip memory space and concurrently fetching data, 
performing any reordering, and computing. Rent's rule [13], which is concerned with the ratio between 
the complexity (e.g. number of gates) in a logic block and the number of external connections to that 
block, also applies favourably to FPGAs, where this ratio is typically an order of magnitude greater than 
CPUs or GPUs, resulting in much higher bandwidth into the logic.  

Table 1 describes, for each of our case studies, the percentage of cycles undertaking useful computa-
tion, the percentage stalled due to memory issues, and the percentage stalled due to other micro-
architecture issues. Our case studies are varied, and Table 1 also reports the ultimate speed up on the 
FPGA against the CPU. For all these case studies there is some performance benefit to running on the 
FPGA, and whilst there are clearly numerous factors at play that determine performance, there is a 
loose correlation between the best speed up on the FPGA being obtained when the CPU is excessively 
stalled. Whilst it might not seem surprising that if the CPU is performing badly then there is more 
opportunity for speed ups on the FPGA, our argument is that it is precisely the bespoke nature of the 
architecture provided by FPGAs that enable such stalling issues to be ameliorated. Interested readers 
can refer to [2], [3], [5], [6], [8], [7], and [10] for more information about our individual case study 
performance. 

Case Study CPU Cycles 
computing 

CPU Cycles 
stalled due to 

memory 

CPU Cycles 
stalled due to 

other 

Speed up 
on FPGA 

Times FPGA more 
power efficient 

than CPU 

MONC PW ad-
vection 

48% 17% 35% 3.92 31.06 

Nekbone AX 
kernel 

27% 57% 16% 4.44 10.86 

Alya matrix as-
sembly 

57% 32% 11% 3.45 6.14 
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Himeno bench-
mark 

62% 11% 27% 2.31 2.87 

CDS engine 72% 1% 27% 1.37 4.50 

Table 1 - Summary of case study performance on the CPU, ultimate speed up on the FPGA, and the number of times the 
FPGA is more power efficient than the CPU. All runs completed on Intel Xeon Platinum Cascade Lake 8260M CPU and Alveo 

U280 FPGA. 

Performance predictability 
Calculating a realistic performance figure that a kernel should deliver on a CPU or GPU is very difficult 
from the code alone due to the black-box nature of the micro-architecture. By contrast, the transfor-
mations performed by HLS to synthesise C or C++ to the HDL layer are transparent and discoverable 
enough such that one can more accurately predict floating point performance on an FPGA from code. 
A common error is for developers to calculate hardware peak performance and use this as context for 
their application's performance. But such estimates involve numerous assumptions and can be highly 
inaccurate (for example see the discrepancy between Rpeak and Rmax in the Top500!) Instead, a far 
more accurate figure can be determined on the FPGA by focusing on the code level.  

An example of this is illustrated in Listing 1 which is a very simple kernel working with data from three 
arrays, u_vals, v_vals, and w_vals. The kernel involves two double precision floating point operations, 
a multiplication, and an addition. Because the loop is pipelined, these operations will run concurrently 
for different data, and as such from the code we can determine that per clock cycle there will be two 
double precision floating point operations. Multiplying this by the clock frequency, we calculate the 
number of floating point operations per second, for instance if the FPGA is running at 300 Mhz then 
the code in Listing 1 can obtain 600 MFLOPS.  

Equation 1 calculates such at-best theoretical performance for a kernel, where fpc is the number of 
floating point operations per cycle and frequency the clock frequency. Whilst it is realistic to expect 
that one could get close to this figure, there are often code implementation issues which require opti-
misation to do so. For instance, in the example of this section it might be that the vals arrays of Listing 
1 are held in external HBM or DDR memory and there is overhead in accessing the data, which is caus-
ing the pipeline to stall. By considering this theoretical performance the programmer can obtain a clear 
idea of how much opportunity there is for optimisation, and whether the programming level effort 
being invested is worthwhile. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Equation 1 - Prediction of theoretical performance 

This at-best theoretical performance is also very useful in providing an upper bound on the perfor-
mance that an FPGA kernel will deliver. Irrespective how much optimisation of the code in Listing 1 is 
undertaken, at 300Mhz, 600 MFLOPS is the maximum performance. If, for instance, the CPU were 
achieving a much higher level of performance then the FPGA programmer would need to increase 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  double temp=u_vals[j] * v_vals[j]; 
  result[j]=temp + w_vals[j]; 
} 

 
Listing 1 - Simple example HLS code 
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either the number of floating point operations concurrently operating per cycle, or the clock fre-
quency. As an example, if the CPU delivered 10 GFLOPS for this code, then 17 instances of the loop 
would need to be operating concurrency (at 300 MHz) to match CPU performance. 

How to write high performance FPGA codes 
Due in part to their lower clock frequency, in comparison to other hardware FPGAs are typically less 
forgiving of poorly tuned code. Where, to obtain even adequate performance on the FPGA with HPC 
workloads, the programmer must structure their code in the correct manner. After selecting a suitable 
kernel, matching an application's bottlenecks with the benefits that can be delivered by the 
architecture as described previously, there are three rules for achieving good performance with HPC 
FPGA codes which are summarised below and are explored in more detail in this section: 

1. Calculate the at-best theoretical performance of a design and ensure this is acceptable before 
writing the code. If not, then modify the design. 

2. Design top-down by structuring the code to suit FPGAs by enabling separate parts of the kernel 
to run concurrently. This is important because FPGAs will only provide acceptable performance 
if one takes advantage of the massive amounts of on-chip concurrency. Whilst this is easily 
achievable for simple codes by loop pipelining, it is more difficult for non-trivial real-world 
kernels.  

3. Optimise bottom-up by concentrating on individual code components to ensure that they are 
free from stalls and each stage can continually progress, consuming input data and generating 
results. The following are examples of common algorithmic anti-patterns which limit 
performance and should be avoided: 

a. External data accesses which cannot be read or written contiguously, as this is 
especially expensive on FPGAs 

b. Data is produced and consumed by different parts of the kernel in different orders, 
requiring careful consideration to handle efficiency and correctly 

c. Spatial dependencies where inputs to one iteration require results from previous 

These points link to the benefits discussed in the previous section, where if a kernel is non-compute 
bound and excessively stalling on the CPU, then if an FPGA design meets the required performance 
(rule one), by adhering to rules two and three on the FPGA, the programmer has effectively solved 
their performance bottlenecks. Put simply, to obtain good performance on an FPGA then the golden 
rule is to keep the data flowing and this is what rules two and three aim to achieve. 

Leveraging theoretical performance metric 
Unlike other technologies, the transparency of FPGAs provides a significant advantage where the 
programmer can calculate a realistic theoretical performance measure and be confident that, given 
the appropriate code level support, they will achieve close to this. This is especially important for 
FPGAs because, due to the long associated build times, it is time consuming to experiment iteratively 
with code versions, so building upon a solid design is very beneficial. Our Nekbone AX kernel case study 
is an example of where, for the initial design, the at-best theoretical performance was calculated to be 
6.9 GFLOPS. However, on a 24-core Xeon Platinum CPU the code was achieving almost ten times this 
level of performance, and as such even with a perfect implementation our initial FPGA design was 
never going to get near the performance required. Put simply, the initial design needed a rethink, 
either increasing the amount of concurrency and/or the clock frequency. 
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At this point the code was performing 23 floating point operations per cycle, and by refactoring the 
calculations, we increased concurrency so that each of the six matrix multiplications could perform 31 
floating point operations per cycle. This increased the total number of floating point operations 
performed per cycle to 203, and at 300MHz resulted in a new theoretical performance of 61 GFLOPS. 
This is still slightly short of the 65 GFLOPS provided by the CPU and-so the clock frequency was raised 
to 400MHz, boosting the theoretical performance to 81.2 GFLOPS. 

It should be highlighted this is at a single kernel level, and whilst ultimately four kernels could fit on 
the FPGA and run concurrently, high performance at the individual kernel level is a crucial foundation 
to such endeavours. This brings us to the other benefit of such a metric, where it can be used by the 
programmer to understand how well their code has been implemented, effectively whether code is 
stall free or not. This is especially important for FPGAs because, whilst vendors are making some 
progress, profiling tools provide little insight about performance inside one's kernel. Leveraging such 
metrics provide a clear indication about potential stalls (our third rule described above) and hence 
areas for improvement. For instance, with Nekbone the initial Von-Neumann based code achieved only 
0.29% of the (6.9 GFLOPS) theoretical performance which indicated there was significant low hanging 
fruit for optimisation. Ultimately the optimised kernel achieved 95% of the theoretical performance 
(77.73 GFLOPS achieved from an 81.2 GFLOPS theoretical maximum), which indicated that it was 
performing well. 

Designing top-down: Application Specific Dataflow Machine (ASDM) 
It won't surprise readers that, due to FPGAs being founded on dataflow rather than Von-Neumann 
principals, to obtain best performance one must embrace this different way of programming. This 
addresses rules two and three described above, and whilst the HLS tooling is generally advanced 
enough to correctly synthesise C or C++ based Von-Neumann based code, this will likely result in 
significant stalling and low concurrency in the resulting execution for non-trivial codes. Such is 
illustrated by Table 2 which depicts the performance difference for each of our case studies delivered 
when moving from a Von-Neumann based version of the code running on the FPGA to a dataflow 
algorithm. There are some very significant performance differences, especially for those kernels that 
ultimately end up performing well and making best use of the FPGA compared to other technologies. 
This illustrates both the importance of embracing the dataflow approach, and the danger that the 
uninitiated might assume poor performance based upon their initial code without undertaking such 
optimisations. Moreover, the CDS dataflow engine we developed is 27.3 times faster on an Alveo U280 
than Xilinx's version from the Vitis open source library [11] which they have developed closer to the 
Von-Neumann model and targeted at ease of integration but does not fully implement our second and 
third rules. 

Case Study Runtime speed up between Von-Neumann and 
dataflow 

MONC PW advection 811.1 

Nekbone AX kernel 3886.5 

Alya matrix assembly 589.2 

Himeno benchmark 111.3 

CDS engine 49.3 
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Table 2 - Kernel level performance difference (runtime speed up) for each case study when moving from a Von-Neumann to 
dataflow based algorithm on Alveo U280 FPGA 

To motivate discussions in this section, Listing 2 illustrates a very simple HLS code snippet where, in a 
single pipelined loop, data is being read from external memory (e.g. DRAM or HBM), used for 
computation, and the result written back to the external memory. Because such simple code can all 
reside in a single loop then the performance will be reasonable as it can be effectively pipelined and 
run concurrently for each element. 

However, combining all program elements into a single pipelined loop as in Listing 2 is only realistic for 
trivial codes, and more complex kernels require different loops and code facets. This includes each of 
our four case studies, whereby default such codes often work in phases as is illustrated in Listing 3. 
Whilst this example is contrived for simplicity, even though the individual loops are pipelined, the three 
phases themselves are running sequentially and violates our second rule. The sequential nature 
imposed means that the concurrency provided by the FPGA is not being exploited. 

Listing 4 illustrates a modified version of the code where the programmer has explicitly adopted the 
dataflow paradigm by splitting their code into three separate functions read_data, compute, and 
write_result, which are connected via streams. Whilst this has increased the code complexity, they are 
running concurrently and making much better use of the FPGA resources, continually streaming data 
from one to the next. Put simply, when the programmer specialises their code for the FPGA, they are 
effectively moving closer to the dataflow paradigm, but this is not necessarily obvious or helped by the 
fact that they are still using an imperative-based language. 

Thinking about this conceptually, we can draw parallels to activities in the 1970, 80s and early 90s, 
around general-purpose dataflow CPU architectures where code is decomposed into distinct 
concurrently executing stages, and these connected, such that data is continually flowing between 
them. This matches closely with the ideas behind the code in Listing 4, where an FPGA kernel 
transforms data whilst it is flowing and the reconfigurable nature of FPGAs enables programmers to 
develop a bespoke dataflow machine which is specialised for each application. Ultimately this means 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  double temp=external_input[j]; 
  double result=temp+10; 
  external_output[j]=result; 
} 

Listing 2 - A simple HLS code where pipelining provides good performance but is limited for more complex kernels 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  internal_in[j]=external_input[j]; 
} 
for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  internal_out[j]=internal_in[j]+10; 
} 
for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  external_output[j]=internal_out[j]; 
} 

Listing 3 - HLS code running in three sequential phases which is often required for non-trivial kernels 
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that we can design the constituent components of the dataflow machine (the stages, streams 
connecting them, and usage of memory) in an entirely application specific manner. Consequently it is 
our proposition that viewing one's FPGA code as an Application Specific Dataflow Machine (ASDM) is 
helpful from the design perspective, and it is a way of thinking about the design of one's code to comply 
with our second rule. Some FPGA programming technologies, such as Maxeler's MaxJ, CAL, and 
MATLAB's Simulink more readily expose the dataflow abstraction than others, but HLS C/C++ is most 

common and irrespective a dataflow view should be a first class concern to enable fast by construction 
FPGA codes. 

Each of our use-cases has adopted this ASDM abstraction, and to explore some of the reasons behind 
these performance differences we highlight the ASDMs for the Nekbone use-case. Figure 1 illustrates 
the ASDM design of the Nekbone AX kernel, where each box is a separate dataflow function and these 
are connected by data streams (a more complex version of Listing 4). This meets our second rule of all 
stages running concurrently, but a challenge is that the U external input data is consumed in different 
orders by each of our first three matrix multiplications, and likewise the order in which data is 
generated by the local accumulation of values is different from the order in which it is consumed by 
the last three matrix multiplications. Whilst there are a number of possible solutions, the optimal one 
adopted here in order to keep the data flowing is to leverage the internal FPGA memories (e.g. BRAM, 
UltraRAM) in avoiding such overheads. Effectively we are tailoring the on-chip memory to suit our 

void run_code(double * external_input, double * external_output) { 
  hls_stream<double> in, out; 
#pragma HLS STREAM variable=in depth=1 
#pragma HLS STREAM variable=out depth=1 
   
#pragma HLS DATAFLOW 
  read_data(external_input, in); 
  compute(in, out); 
  write_result(out, external_output); 
} 
 
void read_data(double * external_input, hls_stream<double> * in) { 
  for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
    in.write(external_input[j]); 
  } 
} 
 
void compute(hls_stream<double> * in, hls_stream<double> * out) { 
  for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
    out.write(in.read()+10); 
  } 
} 
 
void write_result(hls_stream<double> * out, double * external_output) { 
  for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
    external_output[j]=out.read(); 
  } 
} 

Listing 4 - HLS code moved to dataflow approach, enabling parts to run concurrently (conforming with our second rule) 
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application, rather than on a CPU or GPU having to use it in the way prescribed by the hardware 
designer. This on-chip memory is arranged in a ping-pong data buffering style, where the Nekbone 
kernel of Figure 1 is running in separate phases, the first reading data contiguously and filling three 
internal buffers (one for each matrix multiplication). The second is then reading from these internal 
buffers in the order required by each specific matrix multiplication. As these are ping-pong buffers 

then each buffer has two copies which enables both phases to run concurrently, the first phase is 
fetching data for the next element (e+1) and the second phase computing on data for the current 
element (e). 

This same solution can be adopted to solve the other issue where intermediate results are generated 
in a different order from which they are consumed by the last three matrix multiplications. This is 
achieved by adding a third concurrent phase to the kernel (e-1). The benefit of the ASDM approach is 
that the stages are running concurrently by design (rule two) and the programmer is continually 
questioning whether data is moving or stalled. By focusing on this algorithmic level, mitigations can be 
implemented which are likely not obvious based on a Von-Neumann view. Effectively by following our 
second rule has resulted in a kernel design on the FPGA which means that all constituent components 
can run concurrently. Furthermore, this view is portable between architectures, where running on an 
Intel Stratix-10 and using OpenCL channels to connect dataflow regions, we achieved performance 
within around 15% of the Alveo U280. 

Optimising bottom-up: Individual code level concerns 
Once the design has been organised into the top-down ASDM view that we have described, then 
programmers must focus on optimising the individual regions that make up each dataflow stage at a 
code level. These optimisations ensure that data can continually flow through each dataflow stage, 
ideally for progress to be made at each cycle. Whilst these code level techniques are numerous and 
beyond the scope of this white paper, although interested readers can refer to [14], [15], and [16], 
there are some generalisations that can be drawn which are highlighted here. 

There are two general approaches that one can use to ensure that the data is kept flowing at the 
bottom-up code level, firstly pipelining and secondly loop unrolling. These are illustrated in Listing 5, 

Figure 1 - Application Specific Dataflow Machine (ASDM) design of NekBone AX kernel 
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where pipelining (left hand code) will aim to run the constituent components of the loop concurrently 
for different iterations. The argument II=1 to the PIPELINE pragma sets what is known as the initiation 
interval and this instructs the tooling to inject a new loop iteration into the pipeline each cycle, for 
example setting this to two would inject a new iteration every other cycle. The right hand example of 
Listing 5 illustrates loop unrolling, where copies (in this case 4) of the loop are made and run 
concurrently, processing different iterations in parallel to improve performance. 

For performance it is important that data is continually flowing which most often means that the 
pipeline's initiation interval should be one. However numerous code level facets can impact the ability 
to achieve this, and these are illustrated in Listing 6. The left-hand example is accumulating a double 
precision floating point value and the challenge is that there is a dependency from one iteration to the 
next on this double precision floating point number, but it takes multiple cycles (eight on the Alveo 
U280) to complete a double precision addition. Consequently, the initiation interval must be 8, as the 
calculation must have completely finished for one iteration before the next starts to process. The right 
hand side example illustrates dependencies on memory, where external is some external memory port 
and there is a maximum of one access per cycle on these. When the loop is pipelined then both lines 
will execute concurrently, for different iterations, and consequently it requires two accesses per cycle 
which is not supported. Therefore, the initiation interval here will be two, and the same is also true 
when using internal on-chip memories which are at-most dual ported.  

In the previous section we highlighted that, for our Nekbone case study, data read from U is consumed 
in different orders for each of the first three matrix multiplications and how we addressed that. 
Another potential solution would have been for each of these separate matrix multiplications to read 
the external data concurrently in the order that they required. However, from a bottom-up perspective 
this would be sub-optimal for two reasons, firstly this would require three reads on the memory port 
whereas only one per cycle is supported (the issue highlighted in Listing 6 right-hand code) and 
secondly two of the three reads would be non-contiguous. On the FPGA non-contiguous external 
memory accesses must be avoided because, as described in [2], such external data accesses impose 
significant performance overheads due to requiring expensive read requests (over 20 cycles) for each 
individual element rather than a single read request for the entire block of data in the contiguous case. 
This illustrates one of the challenges of designing codes for FPGAs, because whilst we have described 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  double d=x*y; 
  double j=d*z; 
  double p=d*j; 
  result=p; 
} 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
#pragma UNROLL factor=4 
  double d=x*y; 
  double j=d*z; 
  double p=d*j; 
  result=p; 
} 

Listing 5 - Illustration of loop pipelining and unrolling 

double val=0; 
for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  val=val+external[i]; 
} 

for (int j=0;j<NX;j++) { 
#pragma HLS PIPELINE II=1 
  double a=external[i]; 
  double b=external[i+1]; 
} 

Listing 6 - Illustration of spatial and port dependencies that will lower the initiation interval 
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the top-down design and bottom-up optimisations of rules two and three separately, effectively as 
independent steps, in reality there is a feedback cycle and they are far more interlinked. Insights and 
activities from rule three feedback to rule two and a design will evolve based upon activities 
undertaken at both these viewpoints.  

The purpose of this section has not been to describe in detail how to undertake bottom-up code 
optimisations, but instead to give a brief view of some of the challenges involved and the approach 
developers must adopt when porting their codes to the architecture. For more detail on this point then 
the interested reader can refer to our case-studies, for instance in the MONC PW advection kernel a 
shift-buffer was adopted to match the requirements of the memory, in Nekbone we partitioned the 
memories to support multiple accesses, in the Alya matrix assembly code the ordering of operations 
modified, and in the CDS engine the order of operations changed to fix spatial dependencies. For such 
details readers are pointed to [3], [5], [10], and [7]. 

Conclusions and outlook 
In this white paper we have explored the role of FPGAs for accelerating HPC codes, identifying the 
three main areas of benefit that the technology can deliver over and above other hardware. We have 
argued that, whilst the tooling has significantly developed in the past decade, pursuing a Von-
Neumann model of computation will seldom result in good performance. Instead, one must embrace 
the dataflow paradigm to fully benefit from an FPGA, and it is especially helpful to consider one's code 
as an Application Specific Dataflow Machine (ASDM). 

We have explored three rules for HPC development on FPGAs, with the overarching objective being to 
keep the data flowing by ensure that there is a sound initial design, all facets of code can run 
concurrently across the FPGA, and for data to be moving continually. When describing the benefits 
that FPGAs can provide to HPC it might be surprising that we omitted the flexibility of floating point 
arithmetic. Whilst such techniques are promising we have found on current generation FPGAs, because 
such IP cores are pipelined anyway, given a good dataflow design then the performance and energy 
benefits are limited [17] with precision lower then 32-bit. However next-generation hardware 
technologies are becoming available that combine specialist vectorisation engines with the 
reconfigurable fabric, such as Xilinx's Versal ACAP with AI engines and Intel's Stratix-10 NX with AI 
tensor blocks. This could significantly accelerate such reduced precision floating point and fixed-point 
operations and should be watched by the community. 

Whilst HLS has lowered the barrier to entry in enabling correct-by-construction code on FPGAs, 
developing high performance code is another question entirely and as we have described here is still 
a manual undertaking requiring significant experience and expertise. There is opportunity to further 
develop the FPGA programming languages, frameworks, and compilation technologies to better suit 
writing fast-by-construction codes for FPGAs, where specialist dataflow languages or Domain Specific 
Languages (DSLs) might be a potential solution. There is a keenness in the HPC community to develop 
unified programming abstractions which cover CPUs, GPUs, and FPGAs, and it remains an open 
question whether we can ever expect to write performance portable codes between such diverse 
architectures. 
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