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Executive Summary 
 

The document summarizes the main progress and achievements on the development of Exascale 

enabling technologies on the EXCELLERAT core codes during the life of the project, but with 

focus on the last year. Previous reports, D3.1 and D3.2, contain detailed information about the 

activities conducted in year 1 and 2 respectively. The developments have been driven by the 

definition of individual code development roadmaps in collaboration with WP2 and WP4 to 

demonstrate Exascale simulations for the use-cases.  

From this roadmap, several requirements were identified (see D2.1, D2.2 and D2.4 about 

”Reference_Applications_Roadmap and Challenges”) and a summary of the activities 

conducted to address these requirements is presented here. Two fundamental activities are 

associated with these developments: i) Task 3.1 focused on node-level performance and ii) Task 

3.2 on system-level performance engineering. Note that main changes in the evolution of HPC 

systems are occurring at node level. This is a major reason to have a specific task focused on 

this topic.  

In this final year, the activities carried out by the partners have been focused on the development 

of the application demonstrators of the use-cases, mainly by the use of GPUs, emerging 

technologies and the use of Adaptive Mesh Refinement (AMR). At node level (Task 3.1), 

analysis and optimization of the linear solver Spliss on GPU architectures was conducted by 

DLR for CODA, and DLB in Alya. At the system level (Task 3.2), the focus has been on strong 

scaling analyses and on the optimization of the communication kernels. Regarding the advanced 

meshing techniques (Task 3.3), most of the work has been performed on the different codes 

from the project. It includes m-AIA with a mesh adaptive level-set method combined with 

dynamic load balancing, a parallel AMR strategy based on Space Filling Curves for mesh 

partitioning for Alya, TREEPART with domain decomposition library with dynamic load 

balancing for AVBP and AMR for Nek5000 using different graph partitioners ParMETIS and 

PARRSB. The advances in HPC algorithms and computational methodologies presented here 

are part of the expertise of the EXCELLERAT consortium and compile a set of services that 

EXCELLERAT is delivering to the engineering community.  
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1 Introduction 
The present document is a summary of the progress of Exa-enabling enhancements and 

benchmarks performed on the EXCELLERAT core codes during the year three of the project. 

The report is divided into sections that refer to the different tasks of the EXCELLERAT WP3: 

node and system level performance optimization, meshing techniques, emerging technologies, 

benchmarking and testsuite, and data transfer and dispatching. This deliverable is made from 

the different contributions of the partners, which have been compiled and linked to the 

requirements of the use-cases defined in WP2. 

2 Node-level performance optimization - Task 3.1 
Important changes in the evolution of HPC systems are occurring at node level [1]. 

Consequently, the complexity associated with unlocking the intra-node performance of 

computing systems has increased substantially. This task addresses all the aspects related to 

performance at node level, including code porting and algorithm refactoring on various 

architectures. Subsequently, the activities carried out in T3.1 for the third year of the 

EXCELLERAT project are presented. 

2.1 Nek5000  

 

In the third year of the project, we focused on getting Nek5000 and its proxy app Nekbone 

ready for use on AMD systems. As OpenACC support using the AMD toolchain is poor, 

Nekbone and eventually Nek5000 was re-implemented using OpenMP for the GPU offloading, 

and any CUDA replaced by HIP. 

The main compute kernels of Nekbone are memory-bandwidth-bound, so replacing the main 

compute kernel with hardcoded implementations and with careful use of shared memory and 

avoiding bank conflicts when using shared memory, it was possible to significantly increase 

the Nekbone performance. These changes should also help the OpenACC version when 

backported to that version. The performance of the OpenMP + HIP version of Nekbone on a 

single Mi100 GPU1 is shown in Figure 1. 

 

 

Figure 1: Performance results for OpenMP + HIP version of Nekbone on a single Mi100 GPU for 

 
1 https://www.amd.com/es/products/server-accelerators/instinct-mi100 

https://www.amd.com/es/products/server-accelerators/instinct-mi100


Public 

Copyright © 2022 Members of the EXCELLERAT Consortium 

 

Project 823691 EXCELLERAT Deliverable D3.3 Page 9 of 30 

different number of elements and polynomial order N. 

 

2.2 AVBP  

 

The activities of load balancing in AVBP during the Year 3 have been conducted in the context 

of ARM and GPU, and those will be described in sections 4 and 5. 

2.3 Alya 

 

The work in Alya during year 3 on node-level optimization was focused on the development 

and validation of a new load balancing mechanisms for chemistry integration based on the use 

of the Dynamic Load Balancing (DLB) library [2-3], which allows reusing CPU-cores 

associated with idle MPI processes by other processes running on the same node. It is a load 

balancing mechanism based on transferring idle resources at the node level rather than 

transferring workload subsets through message passing. DLB acts as an automatic runtime 

mechanism transparent to the user and requires minimum changes in the source code. DLB has 

already been successfully applied to increase the load balance for the assembly of the right-

hand side terms in the Navier-Stokes equations [4] and it is extended to optimize the chemistry 

part in reacting flow simulations. The proposed solution with DLB, does not need to add extra 

data movement, because everything is done through the shared memory of the node. As it is a 

dynamic mechanism that reacts at the load imbalance, it does not need to predict the stiffness 

nor the computation load associated. And last but not least, it does not require a heavy 

implementation effort in the application.  

The chemical integration is one of the most computationally demanding parts in the integration 

of the governing equations due to the high non-linearity of the Arrhenius-type reaction kinetics. 

It is, therefore, clear that the integration method for chemistry may play an important role in 

the total time for the simulation, especially when detailed chemistry models are considered.  

In this work, to reduce the stiffness of the integration of the species governing equations, a 

splitting algorithm is used to separate the transport from the chemistry [5]. The solution of the 

chemistry problem is achieved by the integration of the open source Cantera software as an 

external library in the multiphysics code Alya. A Fortran to C++ wrapper was created to 

integrate Cantera2 into Fortran for Alya, so internal functions from Cantera could be used in 

runtime. The reaction rates are obtained from in-built in- ternal functions from Cantera, and the 

chemical integration is obtained using the CVODE3 algorithm. CVODE is a package written in 

C to solve IVPs (Initial Value Problems) defined by stiff and non-stiff ODEs.  

In Figure 2, we show the speedup obtained by the hybrid version with and without DLB with 

respect to the MPI-only version (shown as a blue bar in the plot) when running in one node of 

MareNostrum4 for the case with detailed chemistry (left) and reduced chemistry (right). In the 

X axis we can see the different configurations of MPI threads and OmpSs threads to fill one 

node of 48 cores. For all the hybrid executions we use a grain size of 32, being the minimal size 

that does not show any significant overhead in this problem.  

Adding DLB for the detailed chemistry integration in a counterflow flame configuration with 

detailed chemistry, the use of DLB generates a speedup of up to 2.3× versus the MPI-only 

implementation, and up to 1.5× versus the best hybrid configuration. This indicates that the use 

 
2 https://cantera.org  
3 https://cran.r-project.org/web/packages/sundialr/vignettes/my-vignette.html 

https://cantera.org/
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of DLB can improve the performance and address the imbalance further than only the 

hybridization of the code. It is relevant that with the configuration 48 × 1, we obtain results that 

are not far from optimal, a speed up of 2×. For the reduced chemistry, see Figure 2 (right), it is 

observed that the speedup versus the MPI-only version rises up to 7×, which represents an 

additional 2× acceleration versus the best hybrid option. The speedup obtained by DLB in the 

reduced chemistry integration is higher than in the detailed one, as the load imbalance is also 

higher in the reduced chemistry case. Note that the speedup that DLB can obtain is related to 

the existing load imbalance of the application. As DLB re-distributes the tasks by the idle time 

from the processors, there is no need to predict the stiffness from the chemical problem as this 

is handled by DLB.  

 

Figure 2: Comparison of time for detailed (left) and reduced (right) chemistry integration between 

only MPI and hybridization with and without DLB for different number of threads with grain size 32.  

 

In Figure 3, we see the speedup (Y axis) of the chemistry integration stage normalized by the 

MPI-only execution in 48 cores as function of the number of MPI ranks used in the simulation. 

In these plots, solid lines represent contiguous binding, for which MPI ranks are placed 

contiguously in the nodes, while dashed lines are used to represent the Round Robin binding, 

where MPI ranks are spawned in a Round Robin mode among the compute nodes. MPI only 

executions are represented with blue lines, while hybrid DLB executions are represented with 

orange lines.  

 

 

Figure 3. Speedup-up of detailed (left) and reduced (right) chemical integration up to 16 nodes using 

DLB and varying distribution of MPI ranks among nodes, with a configuration of 48 × 1 and grain 

size 32.  
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We can see that the binding has low impact on the performance of the pure MPI implementation 

(blue lines overlap). Contrarily, when DLB is used, the RR binding is helpful to break the 

subdomain’s locality and avoid situations where the subdomains associated with processes of 

a node cover regions with similar conditioning. In the detailed chemistry case, see Figure 3 

(left), we can see that for 2 nodes (96 MPI ranks) there is almost no difference. But for higher 

number of nodes DLB is able to obtain a better speedup when using a Round Robin distribution. 

With 768 MPI ranks, it obtains a 12× speedup with Round Robin versus a 10× speedup with 

contiguous distribution. Additionally, DLB improves the performance of the simulation by a 

factor of 2× with respect to the original pure MPI run when using 16 nodes. For the reduced 

chemistry case, it is observed that the distribution of MPI processes among nodes does not have 

an impact on the performance of the original pure MPI code (blue lines overlap), as it also 

occurs with the detailed chemistry case. However, we observe that the impact of the round 

Robin distribution in this case is even higher than for the detailed chemistry. This is due to the 

fact that the load was more localized in this use case, therefore, DLB benefits of distributing 

the most loaded processes among the different nodes. DLB achieves a speedup of 19× when 

running in 16 nodes (768 MPI ranks) with Round Robin, compared to the 12× speedup achieved 

with DLB with contiguous MPI distribution and 9× with the original pure MPI code.  

2.4 CODA 

 

During the third year of the project, the focus for CODA with regard to node-level performance 

optimization was on the analysis and optimization of the linear solver Spliss on GPU 

architectures. 

Focusing on the specific task of linear-system solving within Spliss allows for integrating more 

advanced, but also more complex, hardware-adapted optimizations, while at the same time 

hiding this complexity from the CFD software CODA. One example is the usage of GPUs. 

Spliss enables the execution of the computationally intensive linear solver on GPUs. However, 

the Spliss interface design provides this capability to a user in a transparent way. By that means, 

CODA can leverage GPUs without the necessity of any code adaptation in CODA. 

The performance analysis and optimization of CODA with Spliss running on GPUs was the 

main achievement during the third phase of the project. First, the numerical stability and 

correctness was validated. Second, the initial performance was evaluated on up to 16 Nvidia 

V100 GPUs. Third, a detailed performance analysis was carried out to identify potential 

performance bottlenecks. 

After that, Spliss has been optimized and re-analyzed multiple times. Optimizations include 

among others the inclusion of CUDA-aware MPI and GPUDirect, the improvement of host-to-

device copies and the inclusion of CUDA multi-process service (MPS) to allow more flexibility 

in the allocation of CPUs and GPUs. 

Finally, CODA with Spliss running on GPUs was evaluated again. The current version achieves 

a speedup of 4.2 to 4.4 in a node-wise comparison of two Intel Xeon 6230 (40 cores) vs. 4 

Nvidia V100 GPUs. This presents a speedup of 2.4 to the initial performance of the GPU 

porting. In addition, CODA with Spliss was evaluated on the Juwels Booster System at Julich 

Supercomputing Center and achieved a very good parallel efficiency of 63% on 128 Nvidia 

A100 GPUs. 
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3 System-level performance optimization - Task 3.2 
This task is focused on identifying and overcoming bottlenecks at system level. Load balancing 

and communication/synchronization reductions are key aspects to achieve good parallel 

performance. Advanced features of MPI have been considered throughout the project. The 

developments carried out in this task include both implementation optimizations and algorithm 

refactoring. In the following the activities carried out in T3.2 for the third year of the 

EXCELLERAT project are presented. 

3.1 Nek5000 

System level optimizations were conducted during Year 1 and 2, and details were given in 

Deliverables D3.1 and D3.2 respectively. 

3.2 AVBP 

Strong and weak scaling in AVBP was detailed in D3.2. 

3.3 Alya 

Strong scaling tests for the two use-cases were reported in D3.1 and D3.2 for the case of full 

aircraft simulations and combustion and emissions respectively.   

3.4 CODA 

During the third year of the project, the focus for CODA with regard to system-level 

performance optimization was on the analysis and optimization of the scalability of CODA 

within the whole framework. 

After DLR’s new HPC cluster CARA4 went operational in February 2020, CODA and the 

surrounding workflow were installed and intensively tested. The AMD Naples architecture 

introduces new characteristics that need to be considered in CODA, such as two-level NUMA 

domains. CODA uses classical domain decomposition to make use of distributed-memory 

parallelism (MPI) and additional sub-domain decomposition to make use of shared-memory 

parallelism (OpenMP) resulting in a hybrid two-level parallelization. Each sub-domain is 

processed by a dedicated software thread that is mapped one-to-one to a hardware thread to 

maximize data locality. Therefore, the performance of CODA was evaluated on the new 

architecture with particular focus on the hybrid setup of MPI ranks and OpenMP threads.  

After identifying the ideal hybrid setup and adapting all workflow components to CARA, 

efforts were focused on improving the scalability of CODA on CARA using a test case that 

solves the Reynolds-averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras 

turbulence model in its negative form (SA-neg). The test case runs on an unstructured mesh 

from the NASA Common Research Model (CRM5) with about 5 million points and 10 million 

volume elements. The mesh is a rather small mesh, which has been chosen for a strong 

scalability analysis (fixed problem size) of CODA. Production meshes are at least 20 times 

larger and accordingly achieve comparable efficiency on much higher scales. 

Figure 4 highlights the scalability of CODA on the CARA HPC system as well as the progress 

that has been made during the third phase of the project. For the rather small mesh CODA 

achieves about 71% parallel efficiency (previously 60%) on the largest available partition on 

CARA with 512 nodes and 32,768 cores. 

 
4 https://www.dlr.de/content/en/research-facilities/hpc-cluster-en.html 
5 https://commonresearchmodel.larc.nasa.gov/ 

https://commonresearchmodel.larc.nasa.gov/
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Figure 4: Scalability of CODA on CARA, DLR’s HPC cluster based on the AMD Naples architecture. 

 

4 Implementation of advanced meshing techniques - Task 
3.3 

This section describes the activities related to the meshing techniques that have been developed 

since M25. There are four partners (RWTH, BSC, CERFACS and KTH) involved in the 

development of the Adaptive Mesh Refinement (AMR) with their applications, namely m-AIA, 

Alya, AVBP and Nek5000, respectively. Note, m-AIA6 is not currently a Reference 

Application. 

4.1 RWTH: Mesh adaptive level-set method combined with dynamic 
load balancing  

The following describes the experience from RWTH in the field of AMR and dynamic load 

balancing. Although this work has not been part in the framework of code development in 

EXCELLERAT, it summarizes useful experience and algorithms shared with the partners. This 

section presents details of an AMR approach and the obtained enhancements implemented in 

the multi-physics simulation framework developed at RWTH, namely m-AIA. The discrete 

approximation in m-AIA is based on a hierarchically refined Cartesian mesh, with cells being 

organized in a cell-tree structure based on parent-child relations.  

 
6 https://www.hpccoe.eu/2021/06/04/m-aia/ 
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The grid generation starts with a single cubic cell, which encloses the entire computational 

domain of all coupled systems and is the root of the cell-tree data structure. This zero-level cell 

is recursively refined by being subdivided into eight cube shaped child cells. Each cell can be 

separately refined or coarsened, regardless of the refinement level of surrounding cells. In the 

process of cell refinement, a cell is split into child cells and becomes a parent of these. Unrefined 

cells are referred to as leaf cells. The cell-tree data structure is completely stored from the leaf 

cells on the highest level of refinement all the way up to the cells of the isotropic start grid, i.e., 

parent cells are not deleted from the data structure. The data structure takes full advantage of 

AMR since coarsening operation can be performed without (re)creating coarse cells. 

For the investigation of a turbulent lean premixed swirl flame a new numerical approach based 

on a finite-volume (FV) large-eddy simulation (LES) combined with a G-equation progress 

variable approach to model the combustion process using a solution adaptive level-set (LS) 

solver, was developed. The finite-volume and the level-set solver are parallelized and coupled 

on a joint hierarchical Cartesian mesh, where each solver can individually use and adapt a subset 

of the mesh cells (see Figure 5).  

Figure 5: Computational mesh example for the LS and FV solver. (a) Joint mesh, (b) FV mesh, (c) LS 

mesh. 

The LS solver adapts the mesh locally in a band close to the flame front location to 

automatically satisfy the high accuracy requirements of the LS solution. Various strategies exist 

to control the adaptation of the mesh, e.g., the AMR can be triggered due to the solution of the 

flow field or due to the location of a moving surface. In the turbulent flame simulation, the 

Cartesian LS mesh is adapted based on a distance criterion near the flame front location. By 

using an automatic refinement/coarsening of the LS solver to the varying flow structures the 

average number of required cells for the LS mesh was reduced by roughly 85% compared to a 

non-adapted mesh. The shape of the simulated turbulent swirl flame varies over time due to the 

turbulent fluctuations and especially due to a helical flow instability, i.e., a precessing vortex 

core (PVC), often observed in combustion chambers. Therefore, the location of the flame front 

in the computational domain changes dynamically and the number of LS cells, which resolve 

the flame front, varies on the different subdomains over time. This leads to increasing workload 

imbalances between the parallel subdomains unless a dynamic load balancing (DLB) method 

is applied periodically during the simulation.  

In the newly developed approach, a DLB method is utilized to minimize load imbalances and 

consequently, to efficiently use all available computational resources. First, computational 

weights are determined for the different cell types, i.e., LS and FV cells. These weights are 

computed based on the measured computing times on each parallel subdomain required to 

complete one time step. That is, no a priori knowledge of the computational weights is required. 

Note that the measured computing times exclude any idle time that is required for 

communication of data between subdomains. Based on the dynamically determined cell 

(a)                                              (b)                                              (c) 
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weights a new partitioning of the joint grid for both solvers are determined such that the 

workload is redistributed among the available compute cores. The impact of the new DLB 

method on the averaged load and the idle times, i.e., the time spent on the actual computations 

and the waiting time mainly due to the communication, is shown in Figure 6. It is obvious, that 

the discrepancies of the required overall computing time are caused by a clustering of the LS 

band cells on a few compute cores resulting in severe overload for the LS computation. With 

DLB, the peaks of the LS load are reduced considerably. The remaining idle time, i.e., the 

communication overhead, of about 0.42s, which is due to the iterative solution process 

involving communication in the LS solver required in each time step, cannot be further reduced 

by redistributing the compute load.  

 

 

Figure 6: Average load and idle times of the finite-volume (FV) and level-set (LS) solvers for an 

unbalanced (a) and a balanced (b) cell distribution. 

 

Due to the used solution adaptive mesh the simulation and the number of cells, i.e., the amount 

of workload, varies on the processes on which the mesh is adapted. This means that after an 

optimum workload distribution has been achieved the imbalance will grow again as the 

simulation progresses. Thus, the DLB method must be applied repeatedly to achieve an overall 

efficient computation. To determine the optimum DLB interval the potential performance gains 

have to be balanced against the time required to perform the DLB (see Figure 7). 

 

 

 

 

 

 

 

 

 

 

Figure 7: Estimated total average computing time required per time step total as a function of the 

DLB interval 𝚫𝒕𝑫𝑳𝑩. 

(a)                                                                          (b) 
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Using the described dynamic load balancing scheme in the large-scale simulation of the swirl 

flame on 170,000 compute cores in the HAZELHEN supercomputer from HLRS, the load 

imbalances were lowered and consequently a reduction of the computing time by approximately 

30% was achieved. A more detailed description of the developed AMR and DLB methods is 

given in [6]. 

 

4.2 Mesh adaptivity in Alya 

In EXCELLERAT, BSC implemented a parallel AMR within Alya. This has required 

significant refactoring of the code to enable dynamic data-structures which can adapt to the 

variable size of the geometric discretization. The steps to migrate the simulation from one 

unstructured mesh into a new one is illustrated in blue in Figure 8. Firstly, the error obtained 

due to the former mesh is estimated in order to measure the adaptation requirements, then a new 

mesh is generated in parallel using MPI. Finally, the solution is interpolated from the former 

mesh to the new one. After this process, the domain decomposition may have become 

unbalanced since the refinement/coarsening is locally determined by the evolution of the 

simulated flow. If this is the case, a load balancing step is required, where this optional step is 

illustrated in green in Figure 8. 

For error estimation, different strategies have been implemented. Tests revealed that basing the 

error evaluation on a Laplacian filter was the most robust approach. However, the error 

estimation is, in general, a physics-dependent aspect that requires problem-dependent specific 

treatment. Once the error is evaluated, a sizing formula, provided by the mesh generator gmsh7, 

can be used to evaluate a size field as an input for gmsh to generate the new mesh. The size field 

is the target mesh size for each zone within the domain and is based on the given error estimate 

and the total number of elements of the mesh. 

Regarding the mesh generation, as referenced above, Alya has been linked with the open source 

mesh generator gmsh. Each parallel process generates a new mesh within the boundaries of its 

subdomain surface. The main issue with the parallelization of the re-meshing is to deal with the 

mesh generation at the borders of the subdomains. Since a conformal approach has been 

implemented in Alya, the interface elements between subdomains must match. To ensure this, 

an interface freezing approach has been adopted. In this approach, the interface elements are 

not changed such that each process can adapt the rest of its subdomain without developing 

incoherent mesh configurations at the interface. However, this approach requires an iterative 

process, interleaving displacement of the interface and local remeshing, to ensure that the 

overall domain is re-meshed according to the adaptation requirements.  

 
7 https://gmsh.info 
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Figure 8: AMR parallel workflow. 

 

Once a new mesh is generated in parallel, a parallel 3D interpolation is performed to migrate 

the solution from the former to the new mesh. This interpolation is based on point-to-point 

communications and the most expensive part is the evaluation of the interpolation coefficients 

that requires searching the element of the former mesh containing each node of the new mesh.   

Regarding the load balancing, as described above, this is an optional stage that will depend on 

the load imbalance of the resulting mesh. A threshold is used to avoid the overhead of 

repartitioning the mesh when the imbalance is low. In Alya the partitioning is based on a 

parallel Space Filling Curve (SFC) method which can be very fast. Graph based approaches 

tend to provide better solutions but at a much higher cost. 

All these steps have been solved during the course of the full EXCELLERAT project; however, 

since M25, the focus has been evaluating the performance of the different available 

supercomputers and also validating the results on different physics configurations.  

Figure 9 shows strong scaling test performed in the Hawk supercomputer from HLRS, where 

Hawk is HPE Apollo platform with AMD EPYC CPUs. The mesh under consideration has 16M 

tetrahedra and the number of CPU-cores used ranges from 512 to 4096. The decrease of the 

time to solution is presented for both the AMR kernel and the overall time-step. The parallel 

efficiency for the overall time step using 4096 CPU-cores is 67%.  
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Figure 9: Strong scaling of the AMR implementation of Alya in a tetrahedral mesh of 16M elements, 

using the Hawk supercomputer from HLRS. Time per iteration reduction for the AMR kernels and 

the rest of the time step up to 4000 CPUs. 

 

Finally, Figure 10 presents an illustrative snapshot of the mesh adaptation for the simulation of 

the flow around a cylinder at Re=120. It can be observed that the mesh is concentrated around 

the vortex structures of the velocity field. 

  

 
Figure 10 Mesh adaptation for the flow around cylinder 

 

4.3 Mesh adaptivity in AVBP 

In D3.2, we described the two AMR workflows developed for AVBP.  One based on the 

CORIA-YALES2 library8 (CORIA-CNRS), and the other an in-house library called 

TREEADAPT based on TREEPART [7], an internal partitioning library developed within the 

 
8 https://www.coria-cfd.fr/index.php/YALES2 
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EPEEC9 project. Both workflows use the MMG10 library (INRIA) as an underlying meshing 

application. 

Since M18, we have focused on optimizing an improving, primarily, the in-house workflow 

and using it to validate the use case C3U1 about explosions (see D2.4). 

Main efforts were concentrated on improving convergence and quality of the resulting mesh.   

Typically, the initial release of TREEADAPT converged within 5 or 6 adaptation steps.  This 

was due to the need for frozen boundaries at the parallel interface to keep a watertight mesh.  

To reduce this convergence time, an edge weight, load balancing method was implemented, 

where interface edges from the current adaptation step are weighted for the next adaptation step 

to guarantee they will become internal nodes on the following iteration and, therefore, will be 

adapted accordingly to the input metric. Additionally, the input target metric field is now 

filtered to respect the user defined ratio between neighboring elements (graduation) to avoid 

conflicting inputs. With these added improvements, time to convergence reduced considerably, 

being reached in 2 steps on average. Our initial success story, adapting a 100 million tetrahedra 

case to 1.4 billion required 20 mesh adaptation steps and 30 minutes. With these improvements, 

convergence is reached in 7 iterations and 10 minutes on the RENE JOLIO CURIE from 

PRACE using 1024 cores (4 AMD nodes). 

Finally, release of TREEADAPT v1.0 as opensource is expected for September 2022.   

4.4 Mesh adaptivity in Nek5000 

 

The AMR framework in Nek5000 was developed in context of two use cases C1U1 (a 

NACA0012 aerofoil with a rounded wing tip) and C1U3 (a simplified rotor in the rotating 

reference frame) performed in WP2. Lately, we focused on improving and testing the parallel 

performance of the nonconforming solver and we performed strong scaling test on the CPU 

partitions of the new supercomputers Dardel, at PDC in Sweden, and LUMI, at CSC in Finland. 

The results are similar for both machines and are presented in the Figure 11, which shows the 

initial super-linear scaling followed by the performance degradation. The super-linear scaling 

is caused by improved cache usage, and the performance degradation is mostly due to 

increasing cost of a coarse grid solver in a pressure preconditioner. The pressure preconditioner 

is one of the most important bottlenecks in the solver and we continued investigation of the 

stability of the additive Schwarz preconditioner for nonconforming meshes. We experimented 

as well with different graph partitioners including ParMETIS and PARRSB. 

 

 
9 https://epeec-project.eu 
10 https://www.mmgtools.org 
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Figure 11: Strong scaling results for nonconforming Nek5000 solver performed on Dardel and Lumi 

using C1U3 test case. 

 

In addition, we improved the surface projection scheme adding the support for parametrization 

given by set of splines. This way we can simulate more complex wing geometries not described 

by an analytical function. It is especially important for a realistic drone rotor simulation. 

 

5 Test lab for emerging technologies - Task 3.4  

5.1 Emerging technologies in Nekbone  

This activity was for Nekbone was reported in D3.2 

5.2  Emerging technologies in AVBP 

For the AVBP application focus on the last period focused on the one side on GPU efficiency 

and portability to ARM architectures, especially GRAVITON11 hardware from AWS. Building 

on a previous port for non-reactive simulations, GPU acceleration coverage was extended to 

the C3U2 use-case, an industrial gas turbine combustion chamber demonstrator from AKIRA 

technologies and SAFRAN.   

In collaboration with NVIDIA, benchmarking and profiling activities were conducted and a 

factor 5 acceleration was obtained using 4 Nvidia A100 GPUs compared to the full 48 Core 

AMD Milan node on the PRACE JSC system JUWELS BOOSTER. Furthermore, strong 

scaling is maintained up to 1024 GPUs. Thus, a strong bottleneck has been lifted towards 

exascale computing for this type of simulations.   

For the ARM architecture portability and benchmarking, a strong collaboration with AWS and 

Arm Ltd was stablished which allowed the porting and testing of the EXCELLERAT AVBP 

use cases on AMPERE and GRAVITON 2 architectures yielded interesting comparison on 

 
11 https://aws.amazon.com/ec2/graviton/ 
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performance per $ and well time to solution per $ using AWS systems. A complete view can 

be found here [7]  

 

5.3 Emerging technologies in Alya 
 

Cache-aware Sparsity Patterns for the Factorized Sparse Approximate Inverse Preconditioner 

Conjugate Gradient is one of the methods of choice for the iterative solution of symmetric and 

positive definite linear systems. Part of its effectiveness relies on finding a suitable 

preconditioner that accelerates its convergence. Factorized sparse approximate inverse (FSAI) 

preconditioners [8-9] are a prominent option with the advantage that, relying on the SpMV 

kernel for its application, they are easily parallelizable and portable to any computational 

architecture.  

An essential element of FSAI preconditioners is the definition of the sparsity pattern where the 

inverse is approximated. This definition is generally based on numerical criteria. In 

EXCELLERAT, BSC has introduced complementary architecture-aware criteria that also 

increase the computational efficiency of the preconditioner. In particular, we define cache-

aware pattern extensions that do not generate additional cache misses when accessing the 

multiplying vector. 

An illustration of this idea is shown in Figure 12. Given a sparsity pattern based on numerical 

criteria (left), all the entries of the matrix that do not generate new cache misses on the 

multiplying vector are considered to extend the pattern (center), finally entries with small value 

are filtered out (right).  The additional entries of the extended pattern do not generate new cache 

misses. A detailed description of this new algorithm proposed by BSC and referred as FSAIE 

was presented in the 30th International Symposium on High-Performance Parallel and 

Distributed Computing (Laut et al., 2021). 

 
Figure 12: Graphical representation of the pattern extension strategy. Left: Initial lower triangular 

pattern of a given matrix, 𝐴 (black squares) plus the multiplying vector 𝑥. Center: Cache-friendly 

pattern extension. Right: Filtered pattern. 

 

 
Figure 13: Time decrease of the FSAIE (full) vs FSAI using the best 𝑓𝑖𝑙𝑡𝑒𝑟 value per matrix (blue 
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columns) and 𝑓𝑖𝑙𝑡𝑒𝑟=0.01 value (orange columns) on the Skylake architecture. 

 

An extensive evaluation campaign considering 72 matrices of the SuiteSparse Matrix 

Collection was performed and is shown in Figures 13 and 14. It demonstrates on the Skylake 

architecture, see Figure 13, average improvements of 15.02% in terms of time to solution, and 

time reductions of more than 50% for some matrices. We prove that the gains come from a 

better utilization of L1 cache level. 

The FSAIE algorithm was also tested on ARM CPUs. The large 256 Bytes cache lines of 

A64FX produced the best results, namely, average improvements of 22.85% in terms of time 

to solution, and time reductions of more than 75% for some matrices, see Figure 14. 

 

 

Figure 14: Time decrease of the FSAIE (full) vs FSAI for the best 𝑓𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for 

the 0.01 𝑓𝑖𝑙𝑡𝑒𝑟 value (orange columns) on the A64FX architecture. 

 

In summary, we have observed that cache-aware optimizations produce substantial benefits 

across large sets of matrices and also on different architectures. 

 

Communication-aware Sparse Patterns for the Factorized Approximate Inverse Preconditioner 

In the context of distributed memory implementations, FSAIE can be applied to each process 

local matrix.  However, FSAIE does not take into account any consideration regarding the 

communication pattern that the sparse matrix defines in a distributed memory scenario. In 

EXCELLERAT, BSC has developed FSAIE-Comm, an approach that successfully increases 

the efficacy of the FSAI preconditioner without introducing any significant communication 

overhead between the different parallel processes of the distributed memory execution. FSAIE-

Comm achieves this low-overhead extension by just adding matrix entries that either 

correspond to the local data of each process, or involve communications between two processes 

for which the initial sparse pattern requires some degree of data exchange. Additionally, a 

method to eliminate the load imbalance that sparse pattern extensions may introduce is also 

proposed.  

Figure 15 provides an example to illustrate the idea of FSAIE-Comm. It shows a sample 20x20 

sparse matrix in a distributed memory scenario composed of 2 MPI processes. Rows belonging 

to the top half of the matrix are owned by one process, and bottom half rows by the other one. 

The light grey area depicts the two local regions, one per process. These regions represent 

couplings between local unknowns. The dark grey area represents the halo regions containing 

couplings between local and halo unknowns. Initial non-zero entries are represented by black 

squares. FSAIE-Comm exploits the structure of the halo area by adding additional non-zero 

entries corresponding to columns where there is already a non-zero halo entry, which does not 

increase communication costs since the corresponding 𝑥𝑖 coefficient has to be exchanged when 

computing the SpMV product 𝐴𝑥 with the initial sparse pattern S. For a symmetric and positive-
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definite matrix 𝐴 = 𝐺𝐺𝑇, the preconditioning step involves two SpMV products with matrices 

𝐺 and 𝐺𝑇. Therefore, the potential halo extensions of FSAIE-Comm for matrix 𝐺 are halo 

coefficients belonging to columns where there is already a non-zero halo entry, to avoid 

increasing communications when computing 𝐺𝑥, and halo coefficients belonging to rows where 

there is already a non-zero halo entry, to avoid increasing communications when computing 𝐺T 

𝑥. Red rectangles of Figure 4 represent halo regions where adding new entries does not increase 

communication costs. 

 

 

Figure 15:  FSAIE-Comm. Graphical explanation of the halo region where entries can also be added 

in a cache-friendly communication-aware extension in a sample 20x20 matrix (red rectangles). Black 

squares correspond to initial entries. 

 

Extending the preconditioning system on each MPI process independently might lead to 

workload imbalance in the SpMV products by 𝐺 and 𝐺𝑇.  We also propose a dynamic filtering 

strategy to avoid extension imbalance in distributed memory systems, opposed to the common 

one, which we will call static. With this method, each process computes a filtering value that 

leads to imbalance reduction. 

We evaluate FSAIE-Comm with an extensive campaign on a heterogeneous set of 39 matrices 

achieving an average solution time decrease of 17.98%, 26.44% and 16.74% on three different 

architectures, respectively, Intel Skylake, Fujitsu A64FX and AMD Zen 2 with respect to FSAI. 

In addition, we consider a set of 8 large matrices running on up to 32,768 CPU cores, and we 

achieve an average solution time decrease of 12.59%. This recent publication [10] shows the 

positive effects of the dynamic filtering strategy with a case from our data set. It is shown that 

FSAIE-Comm outperforms FSAIE in all cases and we demonstrate FLOP/s and L1 cache miss 

reduction on accesses to multiplying vector for different configurations. 

 

5.4 Emerging technologies in Alya: testing on FPGAs 
 

In Year 3, the focus was given to Alya’s nastin module, which solves the incompressible 

Navier-Stokes equations and is a key component of many model-run configurations. In this 

module the building of the matrix which is used to solve Navier-Stokes equations is a costly 

operation, for instance representing 64% of the overall model runtime for a representative 

benchmark. When profiling the matrix assembly code with Intel VTune we found that it was 
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stalling 32% of the time due to memory accesses and 11% due to other microarchitecture core-

bound issues. Therefore, an important question is whether on the FPGA, by designing memory 

access in a bespoke manner, we could ameliorate these issues imposed by the general-purpose 

CPU architecture. 

For this work we used a Xilinx Alveo U280 FPGA which also contains 8GB of High Bandwidth 

Memory (HBM2) and 32GB of DDR DRAM on the board, although for this work we used the 

HBM2 exclusively. The FPGA card is hosted in a system with a 26-core Xeon Platinum 

(Skylake) 8170 CPU. Codes for the Alveo are built with Xilinx Vitis framework version 2021.1. 

For comparison we run the code on a 24-core Xeon Platinum (Cascade Lake) 8260M CPU, and 

Nvidia Tesla V100 GPU. On the CPU, the code has been parallelised via OpenMP (using GCC 

8.3) and on the GPU it uses OpenACC (using Nvidia compiler version 20.9). All reported 

numbers are averaged over three runs. 

Table 1 illustrates the performance, for the Sphere 100K Alya benchmark, for different versions 

of our FPGA kernel as we optimised it. We include the kernel only execution time, the time 

taken for data transfers between the host and FPGA, and total execution time which is a 

combination of these first two measures. For reference the table also includes performance of 

the code running on both a single core of the CPU and the Xeon's entire 24 cores. For each 

FPGA configuration we provide the percentage of DSP and LUT resources required. This 

utilisation is reported on a Super Logic Region (SLR) basis, with three SLRs present on the 

U280. Details of our initial design is reported in Table 1 as Initial FPGA dataflow design, and 

achieving only 0.39% the performance of the 24-core CPU it can be seen that significant 

optimisations were required.  

 

 
 
Table 3: Architectural view of how the host, HBM2, and IP blocks interact with the streaming design, 

where chunks of data in the format required for the Alya incompressible flow matrix assembly engine are 

streamed onto the FPGA and results streamed back. 

 

One of the major reasons for this initial poor performance was that our dataflow design was 

susceptible to deadlock, where if streams were written to in a different order than they were 

consumed from then the FPGA could hang. Furthermore, HLS automatically reorders stream 

writes and reads based upon dependencies in the code, so carefully laying out and manually 

ordering the stream accesses in code does not necessarily solve the problem. Therefore, whilst 

we had pipelined as many loops as we could, there were a number where it was not possible to 

pipeline due to this deadlocking and instead sub-loops were pipelined. This meant that the 

functions in our dataflow machine were rather asymmetrical in their pipelined behaviour, where 

some were pipelined on the outer loop, whereas others only pipelined on inner nested loops. As 

such it meant that, from a performance perspective, some stages had a tendency to stall 

preceding or subsequent stages, effectively reducing the amount of concurrency present in the 

design. 

Whilst one approach would be to leverage HLS's protocol pragma, which enforces HLS not 

reordering contained code, this would still require careful manual ordering of accesses in code 

by the programmer. Instead, we increasing the stream FIFO depth in the HLS STREAM pragma, 

and also disallowed streams jumping ahead of subsequent stages. This involved routing streams 

through subsequent dataflow functions, irrespective of whether they utilised that streaming data 

or not in their calculations. 
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However, it was not just the issue of deadlocking that was limiting the pipelining of loops. In 

HLS when a loop is pipelined then all contained inner loops must be completely unrolled. In 

our code there are numerous nested loops and unrolling all these could result in significant DSP 

usage on the FPGA. Under certain conditions, for instance if there are no statements between 

outer and inner loops, then HLS can merge these automatically when the pipeline pragma is 

applied to the inner loop. In this manner, for some functions in our matrix assembly engine, we 

were able to limit the amount of unrolling required whilst still achieving a pipelined outer loop. 

However, for others this was not possible and the increased DSP usage had to be accepted.  

Furthermore, functions contained a spatial dependency which was critical to fix because these 

account for a large portion of the overall matrix assembly runtime. A spatial dependency is 

where the calculations involved at one cycle depend on previous calculations which might not 

yet have completed. In our specific case there were accumulations on data, and these double 

precision additions required seven cycles to complete. Therefore, the pipelined loop is limited 

to an Initiation Interval (II), the number of cycles before the next value can start to be processed, 

of seven because this number of cycles must elapse before the next value can start to be 

processed due to the dependence on the previously accumulated value. 

It is possible to address the spatial dependency via the dependence HLS pragma, because whilst 

the HLS compiler cannot guarantee there are enough cycles between one outer loop iteration 

and the next due to the dynamic indexes being calculated, this is obvious to the programmer. 

These optimisations enabled data to flow more effectively between the dataflow stages, 

improving the overall concurrency of our design and the performance benefits are illustrated 

by the entry Optimised II of loops in Table 1. It can be seen that this significantly improves the 

performance of our kernel, with it running over 10 times faster, but at a higher resource usage 

cost, where DSP usage has increased from 15% of an SLR in the previous version to 91% now, 

and LUT usage has also increased, albeit at a lower rate. However, the kernel was still only 

achieving around 4% of the CPU's performance, so clearly there were still further optimisation 

opportunities. 

At this point the loop over the number of elements was outside the dataflow pragma, meaning 

that between each element the dataflow stages had to shut down and restart which resulted in 

overhead. To address this, we brought the elements loop inside each of the dataflow stages, 

ensuring that each dataflow stage could run continually from one element to the next. Moving 

the elements loop inside each dataflow region and ensuring that this loop fusion occurred sped 

the kernel up over five times, as reported by Brought elements loop into DF functions in Table 

1, although the FPGA was still only achieving around 21% of the CPU's performance. We also 

refactored the kernel to better structure the computation, into an engine, and separate out the 

loading and writing of data. This is represented by Refactored code into engine in Table 1, and 

whilst this did not significantly improve performance it did help underly the activities that were 

to come next. 
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Figure 16: Revised matrix assembly engine dataflow design based on optimisations discussed in this 

section, most notably streams are always routed through subsequent stages regardless of the 

consumption of data from them. 

 

Figure 16 illustrates the final dataflow design of our approach at this stage, however whilst we 

had spent considerable time optimising the computational engine of our design to ensure that it 

could continually stream data, performance was still falling significantly short of that delivered 

by the 24-core Xeon Platinum CPU. An important question was whether the design was being 

most efficiently fed with input data from, and results being delivered to, the HBM2 external 

memory. Put simply, whether the engine was stalling due to a lack of input data or stalling 

because it was unable to stream out results due to overhead on writing. The way the code was 

written resulted in two major disadvantages for performance, firstly there was a spatial 

dependency for result data, as the accumulation of array elements could be followed by an 

accumulation into that same element for the next node, resulting in an initiation interval of 7 

imposed by the tooling, and secondly accesses to external memory were not contiguous. 

For each separate external memory access, the HLS tooling has to add an explicit read request 

for input data and write response for output data, both costing 69 cycles. For contiguous external 

memory accesses, the compiler can fuse accesses together, effectively meaning that there is one 

of these expensive operations for many individual accesses. To address is we reorganised our 

code to adopt a more streaming approach, where input data is loaded and prepared on the host 

before being transferred over to the FPGA in chunks which are then fed into the matrix 

assembly engine. Result data is handled in a similar fashion, with chunks streamed out by our 

kernel and then when a chunk is ready it is transferred back to the host and handled accordingly. 

Figure 17 provides a general architectural illustration of this streaming approach, where the 

matrix assembly engine is central but connected to a streaming input IP block and two streaming 
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output IP blocks that we had to write. The host and device communicate via the high bandwidth 

memory, with the host still sending data over PCIe. 

 

 
Figure 17: Architectural view of how the host, HBM2, and IP blocks interact with the streaming 

design, where chunks of data in the format required for the Alya in-compressible flow matrix 

assembly engine are streamed onto the FPGA and results streamed back. 

 

The performance of this revised approach is reported in Table 2, where initial streaming 

approach is the first attempt at this and it can be seen that this is significantly faster than the 

previous non-streaming version of the kernel. However, there were further optimisations that 

could be applied, for instance where we pack data together into a single 512-bit width packet 

and undertake a read of 512-bit per cycle, thus ensuring that data is continually fed into the 

engine(s) and this is reported by data streamed each cycle which for the first time out-performs 

the 24-core Xeon Platinum Cascade Lake CPU. Lastly the threaded result handling entry in 

Table 2 is where the handling of results arriving on the host is threaded and-so provides 

concurrency for unpacking the data and placing it into the appropriate location of memory. This 

further improved performance of the FPGA, now out-performing the CPU by more than two 

times. 

 
Table 4: FPGA matrix assembly performance for Sphere 100K benchmark on Alveo U280 for our data 

streaming approach. Compares against the previous non-data streaming FPGA design and 24-core Xeon 

Platinum CPU. 

 



Public 

Copyright © 2022 Members of the EXCELLERAT Consortium 

 

Project 823691 EXCELLERAT Deliverable D3.3 Page 28 of 30 

6 Validation and benchmarking suites - Task 3.5 
This activity was reported in D3.2. 

 

7 Data dispatching and data transfer - Task 3.6 
 

Like in the previous deliverables, SSC is combining their two work package efforts “Data 

dispatching through data transfer” from Work Package 3 and “Data Management” from Work 

Package 4 into one deliverable, which also fits to their motivation in combining data transfer 

and data management into their newly designed data exchange platform. The detailed 

contribution can be found in deliverable D4.6 and the final report in 4.7. 

8 Conclusions and outlook 
As a conclusion, the progress on the development of Exascale enabling technologies on the 

EXCELLERAT core codes for the third year of the project has been presented. While in Year 

1 most of the work was dedicated to node-level and system-level performance optimizations, 

this final year substantial effort was dedicated to load balancing, AMR and emerging 

technologies, mainly GPUs. The activities carried out by the partners on these tasks have been 

focused on running on Nvidia GPUs ARM, and FPGAs and working on parallel solvers and 

preconditioners. Finally, aspects related to intra-node parallelization, such as load balancing 

and OpenMP threading optimizations, have been considered. At the system level, the focus has 

been the strong scaling and optimizing the communication kernels. Additional focus has been 

given to improving the strong scaling of the codes and designing and implementing new 

distributed memory load balancing strategies. The data transfer and dispatching strategy has 

been extended outside the project consortium to the medical sector.  

The developments presented here along with the demonstrators based on the use-cases 

described in D2.4 evidence a clear progress to bringing the engineering world closer to exascale. 

These activities are the central part of the technical core of EXCELLERAT and intimately 

connected to the applications in WP2 and the services in WP4. These advances in HPC 

algorithms and computational methodologies are the building blocks not only for the use-cases 

described in EXCELLERAT, but also beyond and could be applied to other applications of the 

engineering realm. These advances in HPC technologies for Exascale are part of the expertise 

of the EXCELLERAT consortium and are ultimately defined as services that EXCELLERAT 

can deliver to the engineering community. This WP has contributed with the following services 

to the EXCELLERAT services portfolio, further details are given on the EXCELLERAT 

service portal12: 

• Co-Design Engineering Software- and System-Design.  

• Data management for large scale simulation result and input data.  

• Efficient and modern implementation of Exascale ready engineering software.  

• Efficient execution of large-scale engineering simulation workflows. 

• Holistic Testing and Validation for the Engineering Workflow.  

• Meshing and re-meshing techniques, methodologies and Software. 

• Modelling of Engineering Problems. 

• Numerical Solution methods for Engineering Problems. 

• Performance Engineering for the Complete Large-Scale Engineering Workflow. 

 
12 https://services.excellerat.eu  
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• Strategies for Load-Balancing and Data-distribution.  

As an outlook on future developments beyond the project timeline, futher work on Nek5000 

will focus on both the solver and data analysis. It will require an evaluation and improvement 

of the parallel performance of AMR version of Nek5000 further developing the pressure 

preconditioner for nonconforming meshes, and modernising communication kernels merging 

interpolation operator with communication step. Moreover, multiple new features including 

immersed boundary method (IBM), wall-modelling and streaming data reduction algorithms 

are to be developed. That is why a special attention will be paid to the proper coupling of 

Nek5000 with external solvers and Catalyst for in-situ operations. 

Regarding CODA, CODA CFD software and the workflow framework FlowSimulator have 

achieved a high level of code maturity and usability during the project and are about to enter 

into service and replace the predecessor TAU (developed by DLR) in production in the 

European aircraft industry, research organizations and academia, most prominently at DLR for 

aerodynamics data production and validation and at the Airbus Group. The final steps to release 

CODA into production will be one of the main next steps. 

In addition, CODA will be continuously analyzed and improved in numerical as well as 

computational performance. CODA will be adapted and evaluated on new architectures and 

systems (e.g. DLR’s new HPC system based on the AMD Rome architecture) as well as 

emerging hardware technologies. 

Regarding Alya, the work will be focused on the development of multiphysics simulation 

platform that integrates advanced simulation techniques in the CFD codes and massively 

parallel workflows with the capabilities of leading-edge HPC architectures. The 

accomplishment of such simulations involves different level of hierarchies and parallelism in 

the algorithms responsible to control the different tasks. This requires the revision of the load 

balancing strategies for inter- and intra-nodes in the CFD, but also communication with the 

other tasks during post-processing and data analytics. A multicode strategy will be used to 

perform coupled multiphysics simulations, which brings additional challenges to ensure not 

only high computational performance, but also flexibility and portability. The I/O will be 

adapted to facilitate the reading/writing of files during runtime and parallel algorithms will be 

used to communicate the data.  

Finally, regarding AVBP; during the project a new milestone was reached with the release of a 

fully accelerated version for typical simulations using NVIDIA GPUs. Focus will shift to 

increasing the coverage of the GPU acceleration to other complex workflows like the particle 

tracking and detailed chemistry models as well as using AMR and GPUs. This requires major 

analysis of the data existing data structures for efficient acceleration both inter and intra 

node.  Also bringing this version closer to the user by simplifying the workflow when using 

GPUs will be a key topic to ensure its acceptance in the community.  

All these aspects are to be addressed in the future EXCELLERAT-II in case the project is finally 

funded. 
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