

H2020-INFRAEDI-2018-2020

The European Centre of Excellence for Engineering
Applications

Project Number: 823691

D3.4

Best Practices and Recommendations on Driving

Exascale HPC Technologies for Engineering

Applications

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 2 of 45

The EXCELLERAT project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant

agreement No 823691

Workpackage: D3.4 Best Practices and Recommendations on

Driving Exascale HPC Technologies for

Engineering Applications

Author(s): Daniel Mira BSC

 Ricard Borrell BSC

 Gabriel Staffelbach CERFACS

 Thomas Gerhold DLR

 Niclas Jansson KTH

 Adam Peplinski KTH

 Jens Gerle SSC

 Gavin Pringle EPCC

 Patrick Vogler USTUTT

Approved by Executive Centre Management 2022-06-14

Reviewer David Scott EPCC

Reviewer Adam Peplinksi KTH

Dissemination

Level
PU

Date Author Comments Version Status

2022-05-30 Daniel Mira First full version V0.0 Draft

2022-06-13 Adam Peplinski Review 1 V0.1

2022-06-14 David Scott Review 2 V0.2

2022-06-14 Patrick Vogler Incorporation of the necessary

changes

V1.0 Final

Version

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 3 of 45

Executive Summary

This document summarizes the lessons learnt during the technical developments of

Workpackage 3 during the EXCELLERAT project. It is written by the main code developers

with the aim of providing recommendations and practical experience gained during

development and testing to achieve the objectives of the project. It covers activities related to

data transfer, mesh adaptation, performance engineering and load balancing, parallel solvers

and testing on emerging technologies. For the data transfer to the High-Performance Computer

(HPC), a software tool1 was created that allows external users to create jobs and upload their

data as well as download their results. The jobs are inserted into the queue of an HPC machine

and will be executed using secure communications based on HTTPS and TLS protocols.

Substantial effort has been dedicated to developing linear solvers that can achieve high parallel

efficiency, since the solution by direct solvers is usually not valid due to the high amount of

memory requirements, so iterative solvers are commonly used. In TPLS, iterative solvers from

PETSc2 are used, CODA uses the Split solver, while Alya has developed cache-aware sparsity

patterns for the factorized sparse approximate inverse preconditioner for the Conjugate

Gradient method. Dynamic Mesh Adaptation has been a key feature in EXCELLERAT and

different strategies have been addressed in the project from the different codes: Alya, AVBP,

Nek5000 and m-AIA. Difficulties were shown to arise during the development of parallel AMR

techniques due to the complexity of achieving an optimal re-meshing and efficient load

balancing algorithms. General recommendations and benchmark results from the

EXCELLERAT codes are given for future comparisons with other strategies. Another active

area of development of the flagship codes was performance engineering, where different

strategies for load balancing for node- and system-levels were explored by the developers.

Porting to emerging technologies was also shown to bring challenges for the codes in terms of

maintaining the computational performance and ensuring reproducibility of the results. These

results can be considered state-of-the-art in terms of petascale code developments towards

exascale and can be used for benchmarking and assessment of future capabilities in HPC codes

for computational fluids dynamics (CFD). The results presented here clearly show the

fundamental challenges that state-of-the-art petascale codes must address in order to achieve

high performance and efficiency in future exascale architectures. General recommendations and

lessons learnt have been provided for future developments.

1 https://www.excellerat.eu/success-story-enabling-high-performance-computing-for-industry-through-a-data-

exchange-workflow-portal/

2 https://petsc.org/release

https://www.excellerat.eu/success-story-enabling-high-performance-computing-for-industry-through-a-data-exchange-workflow-portal/
https://www.excellerat.eu/success-story-enabling-high-performance-computing-for-industry-through-a-data-exchange-workflow-portal/
https://petsc.org/release

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 4 of 45

ANNEX

Best Practice Guide

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 5 of 45

List of abbreviations

AMR Adaptive Mesh Refinement

AoS Array of Structs

CFD Computational Fluid Dynamics

CFL Courant–Friedrichs–Lewy condition

CLI Command Line Interface

CoE Centre of Excellence

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DLB Dynamic Load Balancing

DMA Direct Memory Access

DMZ Demilitarised Zone

FPGA Field-Programmable Gate Array

GASPI Global Address Space Programming Interface

GMRES Generalized Minimal Residual

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language

HLS High Level Synthesis

HPC High-Performance Computing

HPDA High Performance Data Analytics

ISA Instruction Set Architecture

MPI Message Passing Interface

PE Parallel efficiency

PETSc Portable, Extensible Toolkit for Scientific Computation

PRACE Partnership for Advanced Computing in Europe

RCB Recursive Coordinate Bisection

SEM Spectral Element Method

SFC Space Filling Curve

shm shared memory

SoA Struct of Arrays

Spliss Sparse Linear Systems Solver

SpMV Sparse matrix–vector multiplication

TDP Thermal Design Power

UDF User Defined Function

UPC Unified Parallel C

VE Vector Engines

VPN Virtual Private Network

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 6 of 45

Table of Contents

1 Introduction .. 10

2 Pre-Processing .. 12

2.1 Data Transfer (to HPC Site) .. 12

2.2 Mesh Generation & Mesh Algorithms .. 14

3 Simulation .. 16

3.1 Discretization Methods .. 17

3.2 Domain Decomposition ... 17

3.3 Solutions Methods ... 19

3.3.1 Linear Systems Solvers .. 19

3.4 Dynamic Mesh Adaptation .. 21

3.4.1 RWTH: Adaptive Mesh Refinement for Hierarchical Cartesian Grids 22

3.4.2 BSC: Implementing AMR into Alya .. 24

3.4.3 CERFACS: AMR Strategy for AVBP ... 25

3.4.4 KTH: AMR for spectral code Nek5000 ... 26

3.5 Load Balancing .. 28

3.6 Validation .. 30

3.7 Parallel I/O ... 30

4 Post-Processing .. 31

4.1 Data Reduction and Compression Algorithms .. 31

4.2 Data Analytics ... 32

4.3 Data Transfer (from HPC Site) .. 32

4.4 Visualization Methods ... 32

4.4.1 Remote Visualization ... 32

4.4.2 In-Situ Visualization Methods ... 33

5 Simulation Workflow & Result Feedback ... 35

5.1 Uncertainty Quantification Methods ... 35

6 Workflow Overarching Activities .. 38

6.1 Node Level Performance Engineering .. 38

6.2 Porting to New Architecture .. 40

6.3 System-Level Performance Engineering ... 42

7 References .. 44

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 7 of 45

Table of Figures

Figure 1: Engineering Workflow ... 10

Figure 2: System layout of access and data transfer platform .. 13

Figure 3: Exemplary split of the computational domain into the set of subsections for Transfinit

algorithm in the wing tip case. ... 14

Figure 4: High order mesh produced with gmsh for a relatively complex drone rotor. 15

Figure 5: Main phases of a CFD simulation using Alya. ... 18

Figure 6: Hilbert SFC parallel generation. (a) Initial coarse grid definition, (b) orientation of

each parallel process to continue the recursion, (c) recursive generation of SFC in each

parallel process. .. 18

Figure 7: Graphical representation of the pattern extension strategy. Left: Initial lower

triangular pattern of a given matrix, 𝐴 (black squares) plus the multiplying vector 𝑥.

Centre: Cache-friendly pattern extension. Right: Filtered pattern. 20

Figure 8: Time decrease of the FSAIE (full) vs FSAI using the best 𝑓𝑖𝑙𝑡𝑒𝑟 value per matrix

(blue columns) and 𝑓𝑖𝑙𝑡𝑒𝑟=0.01 value (orange columns) on the Skylake architecture. .. 20

Figure 9: Histogram of L1 data cache misses on the application of the inverse preconditioner

for 72 matrices considered in the SuiteSparse Matrix Collection. 21

Figure 10: Time decrease of the FSAIE (full) vs FSAI for the best 𝑓𝑖𝑙𝑡𝑒𝑟 value (blue columns)

and for the 0.01 𝑓𝑖𝑙𝑡𝑒𝑟 value (orange columns) on the A64FX architecture. 21

Figure 11: Vorticity distribution and corresponding solution-adapted grids for the simulation of

the unsteady flow around a circular cylinder. .. 23

Figure 12: AMR parallel workflow. ... 24

Figure 13: Mesh adaptation for the flow around cylinder. ... 25

Figure 14: Visualisation of the mesh adaptation steps on a 2D case. 26

Figure 15: Mesh structure for the AMR simulation of the flow over NACA0012 wing profile

with rounded wing tip. Element borders are marked with black lines. 28

Figure 16: Scalability of the chemical integration loop: detailed chemistry (left) and reduced

chemistry (right). .. 29

Figure 17: Speed up of DLB compared to the pure MPI execution for the integration loop:

detailed chemistry (left) and reduced chemistry (right). .. 29

Figure 18: The isolines of the error (in %) in different QoIs of turbulent channel flow in the

space of inner-scaled wall parallel grid spacing, taken from [25]. The flow friction

Reynolds number is 550 and the simulations are performed by (top) Nek5000 and (bottom)

OpenFOAM. ... 36

Figure 19: Profiles of the first- and second-order velocity moments of turbulent channel flow

at friction Reynolds number equal to 300, taken from [25]. The shaded areas show the 95%

confidence intervals due to the variation of grid resolution in the wall-parallel directions.

 .. 37

Figure 20: AVBP performance characterisation on AMD Rome processors. 38

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 8 of 45

Figure 21: normalized timing (lower is better) for 20M simulation using AVBP using AWS

resources. .. 39

Figure 22: (Left): Comparison of (balanced) co-execution vs pure GPU execution – elapsed

time per MPI Rank. (Right): Snapshot of Q iso-surfaces of the turbulent flow around an

airplane. .. 39

Figure 23: Strong scaling performance of the Alya code on the MareNostrum IV supercomputer

for the case U1C2. .. 42

Figure 24: Strong scaling on U2C3 for AVBP on JUWELS BOOSER (A100) and JEANZAY

(V100). ... 43

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 9 of 45

Table of Tables

Table 1: Comparison of the data formats and dependencies of in situ interfaces. 34

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 10 of 45

1 Introduction
This document is an outcome of EXCELLERAT the European Centre of Excellence for

Engineering Applications. The centre of excellence (CoE) was established in December 2018

as a project that was funded in the Horizon 2020 framework programme to work towards a

sustainable foundation for a central European knowledge and competence hub for all

stakeholders participating in the usage and exploitation of high-performance computing (HPC)

and high-performance data analytics (HPDA) in engineering.

Having worked together throughout the 42 months of the initial funding phase, in this document

the EXELLERAT consortium presents what were found to be the best practices in the execution

of engineering applications on state-of-the-art HPC-systems on the path towards the exascale

era.

As all tasks and actions of EXCELLERAT are driven by the requirements that are posed by the

usage of HPC for the execution of engineering applications this best practices guide is also

oriented along the typical usage path of scientific computing applications in engineering

research and development.

As depicted in Figure 1 the engineering workflow is composed of four steps. The steps are

derived from the classical simulation task in engineering in which a given physical problem is

described via a set of partial differential equations whose solution is being made universally

computable by the application of a discretization scheme like e.g. the Finite Volume Method.

In order to be able to execute the implementation of the discretized model, the pre-processing

step, in which the input data of the model are prepared, is the first task. After the execution, i.e.

the simulation step, the produced result data have to be analysed in the Post-Processing step. In

the Result Feedback step, conclusions are drawn from the analyses of the results data. These

are used to modify the input data and thus trigger the next design cycle.

If one takes a closer look to the usage of HPC in engineering, all arising tasks can be assigned

to one of these four steps even in applications of pure HPDA in which the simulation step not

necessarily is an actual simulation model but rather the execution of an analysis software.

Figure 1: Engineering Workflow

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 11 of 45

During the first phase of EXCELLERAT, the tasks that are most essential and that require the

most attention for the successful and efficient use of HPC in engineering, especially when

targeting exascale applications, were identified on the basis of various use cases. The

approaches and “How To” solutions that were found by the EXCELLERAT consortium to be

taken best when trying to approach exascale applications in engineering are presented in the

following chapters of this “Best Practices Guide”.

 Chapter 2 - Pre-Processing:

In this step, the focus was on efficient data transfer between the user site and the HPC

centre and on the efficient creation of baseline meshes.

 Chapter 3 - Simulation

Since the core component of all considered use cases was a large-scale simulation

application, most of the efforts spent, went into the simulation step. One bottle neck for

the successful approach towards exascale applications in engineering that was identified

even before EXCELLERAT started was the necessity of efficient methods for adaptive

mesh refinement. In addition, best practices for the related tasks domain decomposition

and load balancing are presented along with results in the area of discretization methods,

validation as well as parallel input and output (I/O).

 Chapter 4 - Post-Processing

When it comes to the Post-Processing step for large scale engineering applications, the

classical approach of “Writing data to disk, read back and visualize” is no longer

possible since the data sets are getting too large and complex to be properly analysed

by purely “looking at it”. Due to that, best practices for data reduction and compression,

data analytics i.e. HPDA, remote and in-situ visualization as well as efficient transfer of

the analyses results’ back to the user’s site are presented.

 Chapter 5 - Simulation Workflow & Result Feedback

To enable efficient and fast design processes, automatic methods for result feedback are

another key component to harvest the possibilities of HPC in engineering. This is

especially true when it comes to uncertainty quantification methods.

 Chapter 6 - Workflow Overarching Activities

In addition to the tasks that can directly be assigned to the individual steps, performance

engineering and efficient implementation play an essential role in the use of HPC. Since

this is true for all applications executed on large scale HPC resources independent of

their position within the engineering workflow, theses general activities are grouped

together in chapter 6 - Workflow Overarching Activities.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 12 of 45

2 Pre-Processing
In the engineering workflow the pre-processing step collects not only all tasks concerned with

model preparation like domain discretizations i.e. meshing, physics specification and boundary

application etc. but also all tasks connected with data transfer from the user’s site to the HPC

centres. Two major areas in which considerable improvements are needed were identified

during the cause of the project.

1.) Data transfer to HPC-Site

When moving from academic usage in which the application developer or even HPC-

experts are directly involved in the execution of engineering applications on HPC

resources, towards production like usage scenarios in which the user of the application

is neither a HPC expert nor an application developer the necessity to ease the usage of

HPC systems especially during the preparation of the input and the compute tasks

becomes essential and can be of great benefit in the uptake of HPC methodologies by

new stakeholders. In addition, data integrity & security throughout the development

process are essential for industrial users to ensure short turnaround times and prevent

duplicated efforts. In the case of the EXCELLERAT project a solution and approach to

circumvent these problems was developed whose overview and further reading details

are presented in section 2.1.

2.) Mesh generation for high order methods

In the industrial and productive usage of computer aided engineering and computational

fluid dynamics high order methods are only very rarely used. Even though they can

deliver results of superior quality, one of the main bottlenecks of these methods is the

preparation of suitable computational grids which can be a complex and time-

consuming task once realistic geometries should be treated. With Nek5000 a highly

scalable and efficient HPC application of the aforementioned type was selected as a core

code of EXCELLERAT. In section 2.2 the developments and best practices found for

the generation of high order meshes are summarized.

2.1 Data Transfer (to HPC Site)

Besides handling the data traffic of large amounts security is the main issue when

communicating with the HPC site. Typically, each customer is connected to the HPC centre

manually via a network connection with individual firewall rules for the corresponding IP

addresses. This results in significant effort and potential security issues. Using a software tool

allows a single-source-of-contact approach where the main focus for security is the

communication between the tool and the HPC site. For the consumer the access to the tool is

convenient and secured with user credentials (E-Mail and password) that allows an easier access

to HPC resources for industrial partners without a long onboarding process.

Figure 2 shows the architecture of the software. The connection of a user to the tool is always

encrypted and secured via TLS (Transport Layer Security). Additionally, rate limits prevent

DDoS or similar attacks. The backend VM connects to the DMZ of the HPC site (here: HLRS)

with a Site-2-Site VPN connection. From there the machines are addressed via a Secure Shell

access.

Another point that can be dealt with efficiently by using a central data platform is the reduction

of data and the avoidance of data duplication. The goal of data reduction is essentially to avoid

data redundancy on a storage system. With the help of this storage technique, only as much

information as necessary is to be written to a non-volatile storage medium in order to be able

to reconstruct a file without loss. The more duplicates that are removed, the smaller the amount

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 13 of 45

of data that needs to be stored or transferred. To do this, the files are first broken down into

small data blocks (chunks) and given unique checksums, known as hash values. A tracking

database containing all checksums serves as the central control instance.

Figure 2: System layout of access and data transfer platform

The data management technique is based, among other things, on the InterPlanetary File System

protocol, a peer-to-peer method of storing and sharing hypermedia in a distributed system. Here,

the cryptographic hash function SHA256 and Base58 encoding are used. Within the hash trees,

the SHA256 checksums are combined, which in turn are combined into a new hash. Therefore,

the probability of a possible SHA256 hash collision is very low.

Thus, the identification of redundant chunks is based on the assumption that data blocks with

identical hash values contain identical information. In order to filter out redundant chunks, the

deduplication algorithm requires newly determined hash values to be matched against the

tracking database only. If the deduplication algorithm finds identical checksums, the redundant

chunks are replaced by a pointer that points to the location of the identical data block. Such a

pointer takes up much less space than the data block itself. The more chunks in a file that can

be replaced by placeholders, the less storage space the file requires.

The data reduction takes place in the background of the platform. As soon as a user uploads a

file via the platform, a hash tree is calculated from the entire file, which is broken down into 1

MB blocks (chunks). Using this hash tree, the data dispatcher can determine which parts have

been uploaded before and which have not. As soon as the data is no longer available in the

system, the complete hash tree is deleted.

In conclusion one can state, that with respect to security, using a software as a central access

point is a good approach to minimalize efforts and attack points. For users especially from an

industrial context the benefit is having a user interface for creating their simulation jobs and a

much more convenient access to the HPC site.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 14 of 45

2.2 Mesh Generation & Mesh Algorithms

The accuracy and efficiency of the numerical solvers strongly depend on the approximations

space on which the solution would be computed, and this translates directly to the generation

of the optimal grid for a given use case. However, it is rarely possible to determine such an

optimal grid in advance making the meshing process challenging. An important improvement

comes with the use of an adaptive mesh refinement (AMR) algorithm allowing for the control

of the computation error during the simulation by dynamical adjustment of the computational

grid. In addition, AMR may simplify meshing process providing e.g., flexibility of

nonconforming mesh, but at the same time makes it more demanding, as efficient AMR requires

relatively coarse initial mesh, that still properly represents a domain geometry. This can be a

difficult task, especially for Nek5000, as this solver is based on a spectral element method

(SEM) and requires high order, hex-based meshes. Building such meshes is an unsolved

problem and most of the available meshing software does not support it. In this section we will

summarize our experience with hex-mesh generation using an open-source mesher gmsh [1]. It

is a natural choice, as Nek5000 provides a robust mesh converter. In the following paragraphs,

we will relate to both the scripting language commands and the Fortran interface (mostly in

parenthesis).

Figure 3: Exemplary split of the computational domain into the set of subsections for Transfinit algorithm

in the wing tip case.

The main limitation of gmsh is the fact it is not a multi-block mesher, so the whole meshing

process could require more effort. It provides relatively robust two-dimensional hex-meshing

algorithm allowing to easily mesh boundary layers through extrusion but lacks fully three-

dimensional recombination method. That is why we did not use the automatic meshing tools

splitting instead the computational domain into a set of subsections and applying Transfinit

(gmshModelMeshSetTransfiniteCurve) algorithm. This algorithm allows to build volume and

surface meshes based on defined split of edges and provides a user full control over the

generated mesh but is very labour intensive. However, combined with native Nek5000 mesh

smoothing algorithm it allows to produce hight quality meshes optimal for SEM solver. One

should mention here Coherence (gmshModelOccRemoveAllDuplicates) operation, which

ensures consistency of the mesh removing multiple overlapping objects with the unique one.

This operation is crucial as higher-level objects e.g., surfaces can be created as separate objects

not sharing edges. For complex meshes Coherence can be time consuming operation as well.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 15 of 45

Apart from the global Coherence (gmshModelOccRemoveAllDuplicates) operator there is a

local counterpart based on BooleanFragmenst (gmshModelOccFragment) allowing to limit the

operation to a specified set of objects and save time. Unfortunately, we found the result of the

local operation to be dependent on the type of object it is applied to.

BooleanFragmens are effective with respect of surfaces generated with ThruSection

(gmshModelOccAddThruSections), but the surfaces generated with e.g.,

gmshModelOccAddBSplineSurface would rather require the global operator.

Figure 4: High order mesh produced with gmsh for a relatively complex drone rotor.

The other important aspect is proper representation of the geometry of the complex external

surfaces adequate to SEM solver. We found the surface correction step performed within

Nek5000 to be crucial. It is even more important for AMR solver as the external surface

representation should be correlated with variable resolution. That is why both gmsh and

Nek5000 require consistent surface parametrisation. In gmsh we found useful OpenCASCADE

[2] kernel and BSplineSurface surface representation. ThruSection algorithm produces surfaces

with equal quality, but Coherence operation becomes more challenging. In EXCELLERAT we

used both methods successfully generating high quality coarse meshes for AMR Nek5000

solver.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 16 of 45

3 Simulation
As the central step for all of the use-cases considered during the initial phase of EXCELLERAT

was the simulation step, i.e. the execution of the simulation code on large scale HPC resources,

with the main targets being efficiency and scalability towards exascale readiness, most of the

work of the EXCELLERAT team was focused on the simulation step.

As the level of parallelism is considered to grow about one to two orders of magnitude,

depending on the system architecture, the focus when going from petascale to exascale

application scale has to be on the effective decomposition of the discretized simulation domain

into suitable parts for the given system architecture.

Since the data size used to discretize the simulation domain significantly grows one will directly

find that it is no longer efficient and at some point not even possible to generate the needed

meshes offline and transfer the data from the user site to the HPC centre.

The strategy to circumvent the problem of high-resolution mesh generation is, generate lower

resolved baseline meshes and then move the generation of the final, highly resolved

computational mesh by so called mesh refinement “in core” i.e. to the HPC system. Another

step further which can greatly increase the efficiency of the complete simulation step is to use

of adaptive mesh refinement techniques in which only the regions of the computational domain

are refined in which the targeted physical phenomena show high spatial variations. The diverse

strategies to implement AMR into simulation codes that were used in EXCELLERAT are

summarized in section 3.4. In addition, overviews of the knowledge gained as best practices in

the areas upstream of adaptive mesh refinement, discretisation methods and domain

decomposition, are presented in sections 3.1 and 3.2. If implicit discretisation methods are used,

then techniques for solving linear systems of equations are another important area which must

be considered when scaling problems efficiently towards exascale. The insights gained in this

area are summarised in section 3.3. A trade-off that of course comes along with the

implementation of AMR methods is the unbalanced load distribution between the parallel

processes that arises from decomposition of the initial mesh and local refinements which is why

load balancing strategies were investigated in detail and the respective findings that are

considered as best practices are presented in section 3.5. As all the aforementioned methods

improve significantly the efficiency and scaling of the codes, they as well introduce significant

changes into the numerics of the codes. Due to that validation and regression gets an even more

important role as it has already. The corresponding best practices that were found by the

EXCELLERAT consortium are presented in section 3.6. As one can state that the movement of

a problem towards large scale HPC is nowadays first of all the conversion of a compute or

memory bound problem into an I/O bound problem, the best practices in that are presented in

section 3.7.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 17 of 45

3.1 Discretization Methods

Discretization methods rely on the introduction of some kind of grid. This grid can be either

regular (uniform) or irregular (non-uniform). Often regular grids are used to discretize domains

which are simple from the geometric point of view whilst irregular grids are used for more

complex cases. This complexity often arises from the existence of irregular surfaces in the

domain. For example, the boundary of the domain may complex or there may be a complex

solid body immersed in the fluid (such as a car or an aircraft).

The model associated with a regular grid may have all of its degrees of freedom collocated or

they may be distributed. A MAC (or staggered) grid, for example, has scalar quantities located

at the centres of cells whilst the components of vector quantities are located on the faces of the

cells. This may be done because of the conservative properties of such a discretization. TPLS

is an example of simulation software that uses a MAC grid. Uniform grids are usually associated

with the use of finite difference methods.

Non-uniform grids are usually associated with finite element methods. They allow the

description of complex surfaces through meshing (see subsection 2.2).

3.2 Domain Decomposition

Domain decomposition is often important when using HPC systems because of the need to

spread computation over nodes. This needs to be done in a way that balances the load on each

node.

For simple domains such as cuboids that are covered by a uniform mesh it is relatively easy to

subdivide the domain into chunks of roughly equal size that require similar amounts of time to

process, Of course the decomposition of the domain leads to the need to exchange data at the

shared boundaries of the subdomains. In developing TPLS it has been found useful to make use

of PETSc (https://petsc.org/release/) to manage the decomposition of the domain and the

exchange of data. Once the decomposition has been described using PETSc’s data structures

the exchange of data may be implemented using simple function calls that hide the details of

the underlying MPI calls.

The non-uniform meshes produced by finite element methods require more effort to balance

the load. Graph partitioning packages such as ParMETIS and PT-Scotch may be used to

implement the decomposition. PETSc supports domain decomposition via external packages

such as ParMETIS and PT-Scotch.

Larger supercomputers allow the simulation of more complex phenomena with increased

accuracy. Eventually this requires finer and thus also larger geometric discretizations, referred

as meshes. In this context, and extrapolating to the exascale paradigm, the pre-processing stage

of a simulation, which sets up the parallel execution given an initial mesh, becomes a critical

part of the workflow.

In EXCELLERAT, BSC has devoted a considerable effort on implementing a fully parallel

workflow that has been used on simulations engaging O(10^5) parallel processes. As shown in

Figure 5, the pre-processing stage is mainly based on interleaving data redistribution phases

with the mesh partitioning. The most critical bottleneck of the pre-processing stage is the mesh

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.labri.fr/perso/pelegrin/scotch/
https://petsc.org/release/

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 18 of 45

partition. An in-house SFC based approach has been implemented in Alya to overcome

limitations of graph-based approaches.

Mesh partitioning is traditionally based on graph partitioning, which is a well-studied NP-

complete problem generally addressed by means of multilevel heuristics composed of three

phases: coarsening, partitioning, and un-coarsening. Different variants of them have been

implemented in publicly available libraries such as Metis/ParMETIS [3], Scotch/PT-Scotch [4]

and Zoltan [5]. All these libraries enable parallel partitioning, but with a limited parallel

performance and a decreased quality of the parallel partition. Both aspects make graph-based

partitioning a potential bottleneck in the simulation workflow. However, considering the

evolution of the computing HPC systems, any potential bottleneck becomes an effective

bottleneck if not addressed in time. Motivated by these circumstances, in Alya we have

implemented a fully parallel geometric partitioning alternative.

Geometric partitioning techniques obviate the topological interaction between mesh elements

and perform its partition according to their spatial distribution. If we consider as unitary element

the mesh cell, then its mass centre can be used to determine its spatial location. A Space Filling

Curve (SFC) is a continuous function used to map a multi-dimensional space into a one-

dimensional space with good locality properties, i.e. it tries to preserve the proximity of

elements in both spaces. The idea of geometric partitioning using SFC is to map the mesh

elements into a 1D space and then easily divide the resulting segment into equally weighted

Figure 5: Main phases of a CFD simulation using Alya.

Figure 6: Hilbert SFC parallel generation. (a) Initial coarse grid definition, (b) orientation of each parallel

process to continue the recursion, (c) recursive generation of SFC in each parallel process.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 19 of 45

sub- segments. A significant advantage of the SFC partitioning is that it can be computed very

fast and it is easy to parallelize, especially when compared to graph partitioning methods.

However, while the load balance of the resulting partitions can be guaranteed, the data transfer

between the resulting subdomains, measured in terms of edge-cuts in the graph partitioning

approach, cannot be explicitly measured and thus neither be minimized.

In the course of EXCELLERAT BSC has published two papers [6, 7] describing and evaluating

the performance of a novel parallel SFC based partitioner. In the algorithm we avoided any

computing or memory bottleneck that could limit the scalability, imposing that the solution

achieved is independent (discounting rounding-off errors) of the number of parallel processes

used to compute it. An illustration of the process is shown in Figure 6, the SFC is built in

parallel allowing to reach the level of granularity required by each problem.

3.3 Solutions Methods

3.3.1 Linear Systems Solvers

The problems (including the use cases of EXCELLERAT) that are tackled on HPC systems are

large and unsuitable for solution by direct solvers because of the amount of memory that such

a solver would require to function. Consequently, iterative solvers are used. Frequently the

iterative solvers used are Krylov solvers. In order to perform well Krylov solvers must be used

in conjunction with suitable preconditioners.

The type of Krylov solver that should be used depends on the nature of the problem being

solved. For instance, there are some solvers that are suitable only for the solution of symmetric,

positive definite systems. For some problems it may be necessary to experiment with different

solver plus preconditioner combinations in order to achieve satisfactory performance.

PETSc, the Portable, Extensible Toolkit for Scientific Computation (https://petsc.org/release/)

provides implementations of many Krylov solvers and preconditioners that may be used to ease

the burden of implementing a solver for a specific problem. Solvers and preconditioners may

be chosen at run time which makes experimentation to determine the best combination much

easier.

TPLS makes extensive use of PETSc for many things including implementation of solvers.

Owing to the fact that the range of problems that can be tackled using TPLS is continually

increasing through the addition of models of new physical processes, and the fact that the

majority of the people developing TPLS are subject matter experts rather than experts in

simulation, it has been found profitable to prove the concept of a new development by first

implementing a simple but inefficient solver such as weighted Jacobi before progressing to

more sophisticated methods using PETSc.

Use of a toolkit such as PETSc represents a move away from the continual reinvention of the

wheel.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 20 of 45

Cache-aware Sparsity Patterns for the Factorized Sparse Approximate Inverse

Preconditioner (BSC)

Conjugate Gradient is one of the methods of choice for the iterative solution of symmetric and

positive definite linear systems. Part of its effectiveness relies on finding a suitable

preconditioner that accelerates its convergence. Factorized sparse approximate inverse (FSAI)

preconditioners [8, 9] are a prominent option with the advantage that, relying on the SpMV

kernel for its application, they are easily parallelizable and portable to any computational

architecture.

An essential element of FSAI preconditioners is the definition of the sparsity pattern where the

inverse is approximated. This definition is generally based on numerical criteria. In

EXCELLERAT, BSC has introduced complementary architecture-aware criteria that increase

also the computational efficiency of the preconditioner. In particular, we define cache-aware

pattern extensions that do not generate additional cache misses when accessing the multiplying

vector.

An illustration of this idea is shown in Figure 7. Given a sparsity pattern based on numerical

criteria (left), all the entries of the matrix that do not generate new cache misses on the

multiplying vector are considered to extend the pattern (centre), finally entries with small value

are filtered out (left). The additional entries of the extended pattern do not generate new cache

misses. A detailed description of this new algorithm proposed by BSC and referrer as FSAIE

was presented in the 30th International Symposium on High-Performance Parallel and

Distributed Computing [10].

Figure 7: Graphical representation of the pattern extension strategy. Left: Initial lower triangular

pattern of a given matrix, 𝐴 (black squares) plus the multiplying vector 𝑥. Centre: Cache-friendly pattern

extension. Right: Filtered pattern.

Figure 8: Time decrease of the FSAIE (full) vs FSAI using the best 𝑓𝑖𝑙𝑡𝑒𝑟 value per matrix (blue

columns) and 𝑓𝑖𝑙𝑡𝑒𝑟=0.01 value (orange columns) on the Skylake architecture.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 21 of 45

An extensive evaluation campaign considering 72 matrices of the SuiteSparse Matrix

Collection was performed. It demonstrates on the Skylake architecture average improvements

of 15.02% in terms time to solution, and time reductions of more than 50% for some matrices.

We asserted that the gains come from a better utilization of L1 cache level (Figure 9).

The FSAIE algorithm was also tested on ARM CPUs. The large 256 Bytes cache lines of

A64FX produced the best results, namely, average improvements of 22.85% in terms time to

solution, and time reductions of more than 75% for some matrices, see Figure 6.

In summary, we have observed that cache-aware optimizations produce substantial benefits

across large sets of matrices and on different architectures.

3.4 Dynamic Mesh Adaptation

Adaptive Mesh Refinement (AMR) is a method to ensure a computational mesh has more

elements in regions of interest (more turbulent) and has fewer elements elsewhere (more

laminar). This subsection describes the lessons learned regarding their own AMR libraries by

four of the EXCELLERAT partners, namely RWTH, BSC, CERFACS and KTH.

Figure 9: Histogram of L1 data cache misses on the application of the inverse

preconditioner for 72 matrices considered in the SuiteSparse Matrix Collection.

Figure 10: Time decrease of the FSAIE (full) vs FSAI for the best 𝑓𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for

the 0.01 𝑓𝑖𝑙𝑡𝑒𝑟 value (orange columns) on the A64FX architecture.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 22 of 45

RWTH have developed AMR within their m-AIA application. They employ a regular octree

mesh, and AMR is triggered based on phenomenon-based sensors embedded within the target

simulations. Moreover, these sensors help determine if mesh cells should be refined or

coarsened.

BSC have parallelized their AMR workflow within their Alya application. Alya

(gitlab.bsc.es/alya/) employs unstructured meshes, using the gmsh mesher. The mesh is

partitioned using Metis and an in-house space-filling curve (SFC) partitioner. The solver uses

first- and second-order finite elements. Alya can be used to solve 3D incompressible Navier-

Stokes flow, low Mach flow, multiphase flow, and combustion. Numerical schemes include

low-dissipation numerical schemes for momentum and scalar transport, entropy-stable

algorithm for multiphase flow based on a conservative level set, explicit time schemes, Runge-

Kutta 3rd and 4th order, and Krylov subspace solution methods for pressure solver

CERFACS have created a new AMR process for their AVBP application, namely

TREEADAPT. AVBP (www.cerfacs.fr/avbp7x) employs unstructured meshes, using the

gmsh icemcfd, centaur soft, and cfd-geom meshers. The mesh is partitioned using ParMETIS,

Ptscotch, Metis, and an in-house implementation of RIB and RCB. The solver uses a

combination of finite difference, finite elements and spectral elements in second- and third-

order. The code can be used to solve 3D compressible Navier-Stokes flow, with LES for

reactive flows. Numerical schemes include 2nd (Lax Wendroff) and 3rd order (Taylor

Galerkin) explicit schemes. TREEADAPT was built on top of the hierarchical domain

decomposition library TREEPART and is able to use the computing system topology for

optimal parallel performance. Mesh adaptation itself is handled by the opensource package

MMG who is capable of adapting triangular and tetrahedral elements.

KTH describes AMR spectral method application, Nek5000. The AMR method does not

employ re-meshing but increases the number of degrees of freedom by increasing the element

count. Nek5000 (nek5000.mcs.anl.gov) (gitlab.bsc.es/alya/) employs unstructured meshes,

using the following meshers: native simple tools; gmsh (supported converter gmsh2nek);

additional supported converters from Exodus format (HEX20 in 3D and QUAD8 in 2D) and

CGNS library (HEXA8, HEXA20 and HEXA27). The mesh is partitioned using ParMETIS,

and an in-house parRSB partitioner. The solver uses spectral elements of up to 15th-order.

Nek5000 can be used to solve 3D incompressible Navier-Stokes flow. Numerical schemes

include time-stepping BDF/EXT; a pressure correction scheme witch staggered pressure points

(PN-PN-2), and a 2-level additive Schwarz pre-conditioner for pressure equation.

3.4.1 RWTH: Adaptive Mesh Refinement for Hierarchical Cartesian Grids

Based on the EXCELLERAT work by RWTH on re-meshing of hierarchical Cartesian grids

the following approach on meshing and AMR using phenomenon-based sensors have proven

to be computational efficient and to yield good results. The sensors are placed on grid points

and can be, e.g., measures of vorticity or entropy. The experience is based on the spatial

discretization approach using hierarchically-refined Cartesian meshes implemented in RWTH’s

own multi-physics m-AIA simulation framework.

https://github.com/MmgTools/mmg

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 23 of 45

In the hierarchical Cartesian mesh, the cells are organized in a cell-tree structure, which is based

on parent-child relations. The grid generation starts with a single cubic cell, which encloses the

entire computational domain of all coupled systems and is the root of the cell-tree data structure.

This zero-level cell is recursively refined by being subdivided into eight cube-shaped child

cells. Each cell can be separately refined or coarsened, regardless of the refinement level of

surrounding cells. In the process of cell refinement, a cell is split into child cells and becomes

a parent of these. Unrefined cells are referred to as leaf cells. Parent–child relationships exist

between cells at different refinement levels and neighbour relationships exist between cells at

the same level. The cell-tree data structure is completely stored from the leaf cells on the highest

level of refinement all the way up to the cells of the isotropic start grid, i.e., parent cells are not

deleted from the data structure. The data structure takes full advantage of AMR since

coarsening operation can be performed without (re)creating the coarse cells.

Experience has shown that an AMR based on a phenomenon-based approach produces among

the best results. That is, sensors are employed to detect and localize physical flow phenomena,

and hereafter, a grid refinement is initiated where appropriate. The utilized sensors for mesh

refinement can, e.g., be defined on the magnitude of the vorticity vector, consequently detecting

shear layers or on a measure for the entropy detecting phenomena that generate entropy

gradients as, e.g., shock waves. The sensors are weighted by the cell length size to take into

account the present cell refinement. The sensors are computed at given time steps or on

specified conditions for the cells, and refinement or coarsening of a cell is controlled by

minimum/maximum threshold values which, in turn, are based on the statistical distribution of

the sensor in the flow field.

The adaptation process can be carried out after a time step is completed, and there are several

criteria can be used to determine whether the adaptation procedure should be started or not. For

steady-state problems a residual-based criterion has proven to be meaningful, i.e., adaptation is

initiated every time a specified residual convergence limit is reached up to a maximum number

of adaptation steps. For unsteady problems, e.g., for a von Kármán vortex street, a time-step-

based criterion is reasonable, such that the grid is adapted at some regular time step interval

(see Figure 11).

In steady state problems, studies have shown that it is advantageous to impose a constraint that,

at each adaptation step, the number of deleted cells must not exceed the number of newly

created cells such that the overall number of cells is not decreasing. In doing so, oscillations of

the number of cells in the limit of grid convergence can be avoided. In unsteady cases, it is

Figure 11: Vorticity distribution and corresponding solution-adapted grids for the simulation of the

unsteady flow around a circular cylinder.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 24 of 45

desirable to keep the number of grid cells constant and, at the same time, to enable a dynamic

change of the grid according to the solution. The adaptation parameters, i.e., the minimum and

maximum threshold values, that determine how many of the cells are refined or coarsened must

be selected correctly to enable the grid changes required to dynamically follow the solution (see

Figure 11).

3.4.2 BSC: Implementing AMR into Alya

Within EXCELLERAT, BSC implemented a parallel AMR within the simulation code Alya.

The steps to migrate the simulation from one unstructured mesh into a new one are illustrated

in blue in Figure 12. First the error obtained due to the former mesh is estimated in order to

measure the adaptation requirements, then a new mesh is generated in parallel. Finally, the

solution is interpolated from the former mesh to the new own. After this process, the domain

decomposition may have become unbalanced since the refinement/coarsening is locally

determined by the physics evolution. If this is the case, a load balancing step is required, this

optional step is illustrated in green in Figure 12.

For error estimation, different strategies have been implemented. Tests revealed that basing the

error evaluation on a Laplacian filter was the most robust approach. However, the error

estimation is in general a physics dependent aspect, that requires problem-dependant specific

treatment. Once the error is evaluated, a sizing formula, provided by gmsh, can be used to

evaluate a size field as an input for gmsh to generate the new mesh. The size field is the target

mesh size for each zone within the domain and is based on the given error estimate and the total

number of elements of the mesh.

Regarding the mesh generation, Alya is linked with the open-source mesh generator gmsh. Each

parallel process generates a new mesh within the boundaries of its subdomain’s surface. The

Figure 12: AMR parallel workflow.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 25 of 45

main issue with the parallelization of the re-meshing is to deal with the mesh generation at the

subdomains’ borders. Since a conformal approach has been implemented in Alya, the interface

elements between subdomains must match. To ensure this, an interface freezing approach has

been adopted. In this approach, the interface elements are not changed such that each process

can adapt the rest of its subdomain without developing incoherent mesh configurations at the

interface. However, this approach requires an iterative process, interleaving displacement of the

interface and local remeshing, to ensure that the overall domain is re-meshed according to the

adaptation requirements.

Once a new mesh is generated in parallel, a parallel 3D interpolation is performed to migrate

the solution from the former to the new mesh. This interpolation is based on point-to-point

communications and the most expensive part is the evaluation of the interpolation coefficients

that requires searching the element of the former mesh containing each node of the new mesh.

Figure 13: Mesh adaptation for the flow around cylinder.

Regarding the Load Balancing, as described above, this is an optional stage that will depend on

the load imbalance of the resulting mesh. A threshold is used to avoid the overhead of

repartitioning the mesh when the imbalance is low. In Alya the partitioning is based on a

parallel Space Filling Curve (SFC) method which can be very fast. Graph based approaches

tend to provide better solutions but at a much higher cost.

Figure 13 presents an illustrative snapshot of the mesh adaptation for the simulation of the flow

around a cylinder at Re=120. It can be observed that the mesh is concentrated around the vortex

structures of the velocity field.

3.4.3 CERFACS: AMR Strategy for AVBP

Within EXCELLERAT CERFACS developed an AMR strategy for its solver AVBP. The

AVBP code relies on unstructured grids for complex geometry and uses domain decomposition

for parallelization. At the beginning of EXCELLERAT no parallel adaptation framework

existed. However, extensive experience existed at CERFACS using the MMG library, therefore

we focused on parallelizing MMG instances for our usage.

Two methods were implemented during EXCELLERAT: first, the coupling with the

proprietary library YALES2 [https://www.coria-cfd.fr/index.php/YALES2] and secondly a

home-made alternative TREEADAPT based on a the TREEPART hierarchical mesh

partitioning library developed by CERFACS for the EPEEC project.

The AMR strategy of both frameworks is displayed in Figure 14, and is as follows:

 Initialisation: An initial partitioning level must be provided to the adaptation

framework.

https://www.mmgtools.org/
https://epeec-project.eu/

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 26 of 45

 Adaptation step: each individual domain is adapted using MMG, which freezes the

borders that correspond to internal domain overlaps to keep matching elements between

partitions. This adaptation is performed using a user defined metric stored at the

vertices of the mesh which is physics dependent and translates to the length of the

attached edges to a given node.

Here, YALES2 and TREEADAPT differ. YALES2 adds an internal loop at this point

at the individual domain level where the skewness of the adapted mesh is checked and

adapted until satisfaction. TREEADAPT does not include this feature as this is not

currently required for AVBP’s explicit solver.

 Interpolation: the current solution fields are interpolated to the next mesh. YALES2

uses a linear interpolation whereas TREEADAPT uses a least squares algorithm.

 Load balancing: after the adaptation, a load balancing step is performed to distribute

the resulting mesh. NB the previously frozen frontiers are weighted to ensure they

become internal for the next adaptation step.

 The current mesh is then checked against the targeted metric. If the requirement is not

met then the adaptation, interpolation and load balancing steps are repeated until

convergence is achieved, and the adaptation framework can be exited.

Figure 14: Visualisation of the mesh adaptation steps on a 2D case.

3.4.4 KTH: AMR for spectral code Nek5000

Within EXCELLERAT KTH developed an AMR framework for high-order CFD solver

Nek5000 based on a spectral element method (SEM), in which a computational domain is

decomposed into a set of non-overlapping, loosely coupled subdomains called elements. Each

element is treated as a spectral subdomain with the approximation space spanned by the

Lagrangian interpolants of order N.

In our approach to AMR we do not preform re-meshing but exploit existing domain

decomposition resulting from the SEM and increase the number of degrees of freedom by

increasing the number of elements. This is achieved by a simple octree splitting in which a

single three-dimensional element (so-called “parent”) is replaced by its 8 “children” elements.

A big advantage of this strategy over, e.g., a local variation of a polynomial order, is a smaller

constraint on the Courant–Friedrichs–Lewy (CFL) condition and more localised refinement as

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 27 of 45

the octree refinement can be recursively repeated. On the other hand, this method introduced

so-called hanging nodes and, as such, the solver was modified by adding an interpolation

operator at nonconforming faces. (In general, SEM requires an interpolation operator and its

transpose on nonconforming faces. However, previously, it was found via numerical

experimentation that Schwarz based pressure pre-conditioners were more effective when using

an inverse operator.) Although this introduces some work imbalance, numerical experiments

showed its effect to be negligible, and both conforming and nonconforming Nek5000 solvers

share the same parallel properties.

Nonconforming meshes may be generated by AMR. The direct way to generate these is to take

a conforming mesh and to shift one element layer with respect to the other, thus one loses one-

to-one correspondence of faces and the vertices can be located at any face position. The

downside is that we lose the simplicity of conforming meshes, wherein data transfer between

element faces is a simple copy. To perform data transfer in general nonconforming meshes we

require a special operator connecting elements, namely a mortar element. In our approach, we

simplify a problem by retaining the initial conforming mesh and providing restriction to the

refinement method, thereby replacing a “copy” with “interpolation” and thus avoid complex

data treatment between mortar elements.

We stress that in our approach we use simple interpolation operators instead of mortar elements,

that constrains the refinement freedom, but on the other hand this enables more simple and

efficient mesh managers to be employed, such as, e.g., the p4est library [11]. Our current

experience shows this conforming-space/nonconforming-mesh approach is not a real limitation

and allows to achieve a significant reduction in the simulation cost.

The other important design decision taken was removing the mesh management from the CFD

solver itself. In this case p4est provides to Nek5000 information required to construct the mesh

built of the children elements only, and all the parent-children relations are hidden (parent

elements are never constructed). This reduces the number of Nek5000 modifications and allows

to achieve an optimal solver set-up for a given mesh; however, this requires a solver restart after

each mesh modification which introduces a cost overhead. This cost is dominated by the grid

partitioning and the coarse grid solver set-up. Although, for relatively small simulations this

additional cost is negligible, it becomes important for the bigger simulation with MPI rank

count reaches tens of thousands. That is why our implementation is currently not well suited

for tracking flow features, but it works very well for cases where the final steady mesh can be

reached, and this includes multiple statistically stable flow cases.

The last aspect is the error indicator/estimator and the resultant refinement strategy to be

employed. It is the most critical point for reducing computational error and minimizing cost.

To measure the computational error, we used two tools: a spectral error indicator and a goal-

oriented adjoint-based error estimator. The adjoint error estimator comes with a significant

simulation cost overhead and problems with simulations of turbulent flows. (At first glance,

adjoint solvers can be describe as integrating backward in time. To get solution sensitivity one

has to integrate forward, using a direct solver, and then backward, using an adjoint solver. For

laminar flows, the adjoint step is usually simple, but turbulent flows are inherently chaotic and

adjoint steps can lead to numerical instability without workarounds.) As such, the spectral error

indicator was used in most of our production runs, as it was found to provide sufficient mesh

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 28 of 45

quality. To target the chaotic nature of turbulent flows we currently work on an error estimator

based on the transfer entropy measuring the causality between the quantities of interest, such

as drag or lift, and flow variables, such as velocity and pressure.

Our implementation of AMR framework in Nek5000 has been very successful, allowing us to

perform previously unaffordable high-fidelity simulations of, e.g., the wing tip or the simplified

rotor (see Figure 15).

3.5 Load Balancing

The need for load balancing arises from domain decomposition as discussed in section 3.6

Domain Decomposition.

WP3-BSC Intra-node and system level load balancing strategies implemented in Alya

The application of a dynamic load balance strategy for the integration of stiff chemical source

terms in combustion simulations with detailed chemistry was addressed. Chemical reactions

occur in thin layers, which are usually characterized by highly non-linear and stiff chemical

reaction rates that are very costly to evaluate. In fact, this problem is of relevance when more

realistic fuels or surrogates are to be considered. In Alya, the source terms are integrated using

an implicit first-order backward Euler scheme based on the library CVODE [12]. The

computational costs of the chemical integration take a large share of the overall timestep for

complex fuel. Therefore, strategies for increasing the performance are of paramount relevance.

The high imbalance is inherent to the problem being solved. The chemical reaction is only

solved at the elements containing the flame and for a certain temperature range. Therefore, the

imbalance cannot be addressed by repartitioning the domain, because the problem is unsteady,

and the flame undertakes some dynamics that cannot be predicted. In collaboration with POP

(https://pop-coe.eu), the DLB library (Dynamic Load Balancing library) [13] has been

integrated into Alya to reduce the imbalance and to increase the computational performance in

combustion simulations with stiff chemistry.

Figure 15: Mesh structure for the AMR simulation of the flow over NACA0012 wing profile with

rounded wing tip. Element borders are marked with black lines.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 29 of 45

In Figure 16, the duration of the integration loop for the detailed and reduced chemistry cases,

where the x-axis represents the different numbers of MPI ranks corresponding to 1, 2, 4, 8, and

16 nodes on MareNostrum IV supercomputer, is plotted. Obviously, the DLB integration

improves the pure MPI code in all cases. It is furthermore observable that the impact of the

grain size becomes more important when the number of MPI processes is increased. A high

grain size value has a negative impact on the performance when DLB is used and the number

of MPI ranks is increased. This is due to the fact that the increase of the number of MPI ranks

leads to a lower load per rank and packing the load in big chunks does not allow for malleability

to balance the load by DLB. The optimum grain size in all the cases is found to be around 32.

In the reduced chemistry case using small or large grain sizes has a negative impact on the

performance. That is, in the case of large grain sized the same situation as in the detailed

chemistry use case appears, i.e., large grain sizes do not offer sufficient flexibility to load

balance the computation. As it can be seen in Figure 16, using small grain sizes in the reduced

chemistry case leads to a reduced impact of DLB on the performance due to the smaller relative

weight of the integration loop in the whole time step.

The speed up obtained in the integration loop using DLB with different grain sizes is compared

to results of a pure MPI version running with different numbers of MPI ranks in Figure 17. For

clarity, only the largest and smallest grain sizes (i.e., 1 and 128) and the ones that delivered best

performance (i.e., 16, 32 and 64) are shown. From the results it becomes obvious that with DLB

using a grain size of 16 the execution can be accelerated by a factor of 2x in all the cases for

the detailed chemistry case, except when using 16 nodes (768 MPI ranks), where a speed up of

1.8x is achieved. It is observed that the more nodes are used the less speed up DLB is able to

Figure 16: Scalability of the chemical integration loop: detailed chemistry (left) and reduced chemistry

(right).

Figure 17: Speed up of DLB compared to the pure MPI execution for the integration loop: detailed

chemistry (left) and reduced chemistry (right).

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 30 of 45

obtain. This is due to DLB not featuring load balancing across nodes and also because the

amount of computation per MPI rank is reduced. This leads to less granularity hindering optimal

load balancing. For the reduced chemistry case, the speed up using 48 and 96 MPI ranks (1 and

2 nodes) is more impressive than in the detailed chemistry case. Here, the speed up reaches

factors 6x and 4.5x. This is because the load balance in this case is fairly low, leaving a lot of

space for improvement by applying DLB. When the problem is partitioned among more MPI

ranks, the load is more distributed, leaving less load imbalance to address by DLB.

3.6 Validation

Scientific and engineering simulations need to be validated in order to demonstrate their

relevance.

Comparison to theoretical results should be made when such results are available. Of course,

complete theoretical results will not be available (as the existence of such results would make

the use of simulation redundant) but partial results such as linear theory for small disturbances

may be available.

Comparison to experimental results should be made when such results are available. Use cases

may be chosen to correspond to experiments that have been made or are being carried out in

parallel with the simulations.

Visualisations may be used to check that the results produced by simulations are qualitatively

correct.

All of these methods have been used in the development of TPLS. For the case of TPLS

ParaView (https://www.paraview.org) has been found to be a useful visualisation tool.

3.7 Parallel I/O

Libraries for parallel input and output, such as HDF5 and NetCDF, exist and should be used.

They are built on top of MPI I/O and provide higher level interfaces. As well as providing

performance benefits over serial I/O they make some simulations possible that would otherwise

be impossible. This is because serial output is implemented by gathering all of the data in a

single MPI process and then writing it from there. The amount of memory available on a node

may not be large enough to allow this. Similar considerations apply to serial input.

Checkpointing should use the same I/O mechanism as the rest of the I/O in the program. A

single checkpoint only is required to restart a simulation. Checkpoints consume disc space and

it is usually desirable to delete then as soon as possible. However, to allow for the possibility

of a program terminating whilst writing a checkpoint, the previous checkpoint should not be

deleted until the new checkpoint has been completed.

https://www.hdfgroup.org/solutions/hdf5/
https://www.unidata.ucar.edu/software/netcdf/

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 31 of 45

4 Post-Processing
Once the simulation step i.e. the simulation code is executed or produces results, the output data

have to be post-processed in order to be interpreted by either a domain expert or in case of e.g.

an automatic optimization procedure an algorithm. In both cases, especially when data are

stored on file systems or have to be transferred to another system or the user’s site, the first

thing to do is to apply data reduction and compression algorithms. The findings and best

practices with respect to this are presented in section 4.1. When targeting exascale applications,

looking at the produced raw result data of the simulation fields is no longer the way to go even

though visualization might be possible. Instead, a key methodology that has to be employed in

order to evaluate and analyse the produced large scale result data and to draw meaningful

insights is HPDA. An overview about the best practices in this area can be found in section 4.2

while the visualization methods that were found to be best applicable in the case of exascale

engineering applications and especially in combination with HPDA are presented in 4.4.

4.1 Data Reduction and Compression Algorithms

Over the years, a steady increase in computing power has enabled scientists and engineers

develop increasingly complex applications for machine learning and scientific computing.

While these applications promise to solve some of the most difficult problems we face today,

their data hunger also reveals an ever-increasing I/O bottleneck. Therefore, as the complexity

of large-scale applications and HPC systems increases, it becomes essential to provide users

and developers with tools that make it easier for them to get the last ounce of I/O performance

out of modern computing clusters.

To address the problem at its inception, it might be useful to think about reducing the amount

of data that needs to be transferred. One strategy to mitigate this I/O bottleneck would be to

reduce the spatial and temporal resolution of the simulation files. Yet, this trivial method of

data reduction is acceptable and applicable only in very few cases. Accordingly, the best way

forward is to use the statistical redundancies of our numerical datasets to reduce the overall size

of the files passed to the I/O stack.

Since effective data storage is a pervasive problem in IT, much work has already been put into

refining it. So-called lossless dictionary encoders represent a simple approach to compressing

generic datasets. For example, novel entropy encoders based on asymmetric number systems

[14] can enable real-time data compression without affecting the compression performance

itself (e.g., Zstandard [15]).

However, lossless compression techniques are limited in their performance and can only

achieve a size reduction of 10-30% on average. Moreover, these encoders only affect the

statistical redundancies of the underlying bitstream and are not able to exploit spatially

correlated information. Efforts have already been made to apply lossy compression algorithms

from the entertainment industry to floating-point arrays that take these spatial redundancies into

account. For example, the BigWhoop [16] compression library was developed as part of the EU

projects ExaFLOW and EXCELLERAT to leverage the power of the JPEG 2000 standard for

numerical datasets. BigWhoop has already shown, with DNS data from a turbulent boundary

layer, that compression ratios of 1:20 are possible without inducing a significant error - of the

order of 1% - in the dataset [17].

Contemporary compression strategies for numerical datasets, such as the ZFP algorithm

developed by Peter Lindstrom [18] or the JPEG adaptation by Loddoch & Schmalzl [19], take

a similar approach to lossy data reduction. However, the reliance on a block-coding

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 32 of 45

transformation leads to severe compression artifacts at higher compression rates, resulting in

an unacceptable loss of information for sensitive simulations.

4.2 Data Analytics

The computed statistics of turbulent flow simulations are generally uncertain due to the finite

averaging time. The techniques developed for estimating such uncertainties, [20, 21], act in an

offline mode, meaning that they require to have access to all available samples of a time-series

at once. This can lead to I/O deficiencies and requirement of having a large storage for large-

scale simulation for turbulent flows. Through a collaboration between KTH and Fraunhofer

SCAI within EXCELLERAT, we have designed, implemented and tested an in-situ framework

to estimate uncertainties in turbulence statistics due to finite time-averaging [22]. For this, we

have proposed a low-storage updating formula for autocorrelation function for turbulence time-

series. The framework is tested using Nek5000 as the flow solver that is linked to UQit [23]

through a VTK-Catalyst interface. The resulting uncertainty estimates are the same as those in

the offline mode and the computational overhead added by the in-situ algorithm is negligible.

These promising results are encouraging for further development of the in-situ framework for

other UQ and data-driven analyses relevant to large-scale flow simulations.

4.3 Data Transfer (from HPC Site)

For the data transfer back from the HPC site to the user’s site the same mechanisms for data

handling and security should be used as for the transfer to the HPC site even though the

facilitation of data compression and reduction methods in combination to the techniques

described in section 2.1play a much more prominent role since data size increases significantly.

4.4 Visualization Methods

Visualizing the data that results from (pre-)exascale simulations introduces new challenges,

most importantly the huge amount of data produced. Loading this data into a visualization

program will require more memory than workstations can offer and even exceeds the limits of

dedicated visualization clusters. Using secondary clusters also introduced problems of moving

the data. A solution to these issues is remote visualization on the computation cluster.

But sometimes the trouble even starts before the data is written to disk. Data I/O of massively

parallel simulations easily reaches the limits of today’s filesystems. Writing results do disk is

therefore often the bottleneck of exascale simulations. This can be solved through smart

reduction of output data during simulation run-time, which is achieved through in situ post

processing.

4.4.1 Remote Visualization

This approach is meant to utilize the compute cluster of the simulation also to do the

visualization. The advantages are that the data does not have to be moved and the maximum

amount of memory is available. The challenge to overcome is that these systems usually do not

have sophisticated graphical capabilities and output devices and are in general not locally

reachable. Therefore, remote visualization is introduced as a solution. The spectrum of remote

visualization methods spreads between these two basic approaches:

• Object based: the data objects required for post processing and visualization are

generated and reduced on the compute cluster and then sent to a visualization cluster or

workstation for rendering and analysis.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 33 of 45

• Image based: the simulation data is visualized and rendered on the compute cluster and

the image data is sent to a visualization cluster or workstation for output.

The advantage of the object-based approach is that the image is rendered locally and therefore

changes of perspective can be applied without latency. However, scalability is limited because

the amount of data that has to be transmitted is proportional to the raw simulation data and can

therefore quickly exceed network and local memory capacities. Compression of geometry and

mapped data (e.g. with Big Whoop for structured grids) can reduce but not necessarily solve

that problem.

In contrast the image-based approach's data transmission consists of image data of a size that is

decoupled from the original data size and only determined by the requested resolution.

Especially for exascale simulations this is a huge benefit. The downside is that rendering must

be performed on the compute cluster which might not be equipped with GPUs. Also, latency is

introduced because user input has to be propagated to the remote cluster to receive updated

images.

Our approach seamlessly integrates both, object and image-based methods. The first is realized

in the sense that the user can cut off the post processing pipeline at any point and connect it to

one on a local machine. The latter is implemented as parallel, CPU based remote rendering.

Latency hiding through various re-projection methods allows fluid use even in 3D virtual

environments while required bandwidth is reduced by image compression algorithms.

Furthermore, remotely rendered components can be put into context with locally rendered

geometries to restrict latency to the image parts that require remote rendering (because of their

data size or location).

Fore a detailed description see: https://elib.dlr.de/93169/1/cresta_whitepaper2_OCT14_03.pdf,

section 4.2.

4.4.2 In-Situ Visualization Methods

To analyze simulation data during runtime, simulations must expose their data through a

specified interface to the post-processing back-end. While there are in situ interfaces

proprietary to HPC-visualization tools like ParaView, VisIt and Vistle, there is also the SENSEI

interface that combines its simulation interface with these and other back-ends to allow

maximum flexibility on the analysis side. Implementing an in-situ interface in a simulation

requires programming effort and using it and can introduce additional dependencies and can

lead to overhead through data conversions and copying. Choosing the right interface(s) should

therefore be considered carefully depending on the data format(s) of the simulation code and

the users’ requirements on the back-end(s). Table 1 gives an overview about the used data

formats and the required dependencies.

While the LibSim interface provided by VisIt is quite pure and efficient by only sharing pointers

and enum types between the simulation and VisIt this approach also leaves more room for errors

in terms of type safety and data ownership.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 34 of 45

Interface Data formats Additional Dependencies

ParaView (Catalyst) VTK based VTK build by ParaView

VisIt (LibSim) Raw pointers with support for

AoS and SoA

Runtime linking to a single LibSim

library

Vistle Proprietary data format based

on shared memory arrays with

support for SOA. Additionally

features a LibSim interface.

Vistle

SENSEI VTK based Dependencies to the enabled back-

ends and in older versions VTK as

eventually used by the back-end.

Table 1: Comparison of the data formats and dependencies of in situ interfaces.

The Vistle interface on the other hand forces the simulation to use Vislte’s API to allocate or

copy its data in shared memory (shm). This API requires data in the struct of arrays (SOA)

format. This is not only higher development effort but also comes with potential runtime costs

in terms of memory consumption and data conversion. The advantages are, that Vistle can run

as a separate process and therefore prevent the simulation from crashing in case the back-end

does. Also, data ownership is no issue since the shm-arrays are managed by Vistle.

The Catalyst (by ParaView) and SENSEI interfaces provide a middle way between VisIt’s and

Vistle’s approach through using VTK as a bridge between the simulation and the back-end.

Since VTK offers great flexibility in terms of accepted data formats, mapping between them

and data ownership the implementation effort is comparably low while the runtime overhead

stays minimal. The only disadvantage is the additional dependency on VTK and in case of

SENSEI a potentially additional conversion from VTK to the data format the specified back-

end requires. At least this conversion is handled, transparently to simulation developers, under

the hood of SENSEI.

Another aspect of in situ analysis is using the knowledge gained during runtime to steer the

simulation. Especially LibSim provides custom commands that can be implemented and set by

the simulation and then triggered from VisIt (or Vistle using its LibSim interface). These

commands can have a string as argument that is then passed from the back-end to the simulation.

Even though in theory this can be abused to also send more complex data like bounding

conditions to a simulation, these string-based commands are clearly not meant to. And while

these commands always must be implemented by the simulation developers, complex

commands also require support from the used back-ends.

SENSEI provides functionality to retrieve mesh-based data from the back-end similar to how

the back-end access the simulation data.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 35 of 45

5 Simulation Workflow & Result Feedback
As described in the previous sections, data transfer of input and result data from and to the

user’s site is considered in pre- and post-processing steps. In the simulation workflow and result

feedback step the focus is directed towards automatic workflow processing. In the first phase

of EXCELLERAT especially methods for uncertainty quantification were considered. The best

practices in that area are summarized in the following section.

5.1 Uncertainty Quantification Methods

During EXCELLERAT, KTH has been contributing to the method and software development

as well as application of various uncertainty quantification (UQ) techniques to CFD problems,

in general, and scale-resolving simulations of turbulent flow, in particular. For the latter,

the main constraint to deal with is the high computational cost of the simulations which imposes

specific requirements on the UQ techniques. A main contribution of KTH has been developing,

UQit, an open-source Python package for UQ in CFD [23]. Currently, there are techniques such

as standard and probabilistic polynomial chaos expansion (PCE) for uncertainty propagation,

standard and probabilistic Sobol indices to measure global sensitivity analysis, Gaussian

process regression with observation-dependent noise structure to construct surrogates based on

uncertain data in the space of uncertain parameters, tools for time-series analysis and estimation

of time-averaging uncertainties, etc. The methods have been implemented in a non-intrusive

way, therefore UQit can be used with any CFD solver conditioned on having appropriate

interface. UQ it has been employed for different purposes with the general aim of enhancing

our understanding of various sources of uncertainty and influence of different factors in high-

fidelity turbulent simulations.

A direction of research has been towards assessing the sensitivity of the scale-resolving

simulations of wall-bounded turbulent flows performed by Nek5000, with respect to variation

of numerical and modelling parameters. A framework was proposed to assess accuracy,

sensitivity and robustness metrics which together can help us draw best-practice guidelines for

performing more accurate simulations [24]. The framework was examined for the canonical

wall-bounded turbulent flows. The influence of changing the spatial resolution in different

directions through systematically varying the elements size and number of collocation (Gauss-

Legendre-Lobatto) points per element (equivalent to polynomial order) on the flow quantities

of interest (QoIs) has been studied. Moreover, the sensitivity with respect to the variations in

the parameters of filtering which is used for numerical stabilization has been extensively

investigated. As an additional achievement, the predictive accuracy and sensitivity of Nek5000

have been extensively compared to OpenFOAM employing the above-mentioned UQ-based

metrics. Some of the main conclusions of our study [25] can be listed as:

1. For any QoI and at a similar resolution, Nek5000 can be at least twice more

accurate than OpenFOAM, see Figure 18.

2. The reduction of the error in QoIs in the space of numerical/computational

parameters is non-monotonic which makes posterior error predictions in high-

fidelity turbulent flows challenging.

3. The influence of numerical parameters varies between QoIs and also in the wall-

normal direction. In particular, the near-wall region in a turbulent boundary layer

is where the least influence of the numerics could be observed, see Figure 18.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 36 of 45

4. In Nek5000, refinement can be achieved through increasing the number of

elements and the polynomial order in each spatial direction and each element.

Our observations suggest that if any filtering is involved, a better option is to

increase the polynomial order, because there can possibly be an optimal set of

filtering parameters which lead to more accurate simulations even at relatively

coarse resolutions.

5. For filtering in Nek5000, a high-pass filtering approach with a residual-based

source term is preferred to the explicit filtering method.

6. In high-pass filtering, the number of modes which are filtered are more

influential than the filter weight.

7. If the guidelines for grid-resolution are derived based on appropriate inner-

scaling, then they can be (to a large extent) Reynolds-independent.

As a part of our efforts, probabilistic versions of PCE and Sobol indices were developed to

perform computer experiments based on data which were uncertain due to the finite time-

averaging. A very important conclusion was that for a QoI, the highest sensitivity with respect

to the variation of numerical parameters is observed at the same physical location where the

highest time-averaging uncertainty is estimated. Moreover, the developed technique can be

used for estimating error in the space of numerical parameters while confidence intervals for

the errors and associated sensitivity indices are also provided.

A main objective of simulation of turbulent flows is to compute turbulence statistics, which can

range from low-order moments such as the mean velocity/pressure to higher-order statistics

such as the Reynolds stresses. The relevant UQ problem is to accurately estimate the uncertainty

in computed turbulence statistics due to the finite averaging time. The main challenge is to

Figure 18: The isolines of the error (in %) in different QoIs of turbulent channel flow in the space of

inner-scaled wall parallel grid spacing, taken from [25]. The flow friction Reynolds number is 550 and the

simulations are performed by (top) Nek5000 and (bottom) OpenFOAM.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 37 of 45

accurately consider the impact of the autocorrelation and cross-correlation of the time samples

of the flow variables which contribute in statistical terms. A part of our efforts within

EXCELLERAT has been devoted to further develop techniques for estimating time-averaging

uncertainty in turbulent flow statistics as well as providing a set of guidelines for choosing

hyper-parameters in various estimation techniques. For the most popular batch-based estimator

that is batch-means batch-correlation method [20], we proposed to choose the batch size in such

a way that the correlation of the second lag between the batch means becomes close to zero.

For the autoregressive-based estimators [21] used for modelling autocorrelation functions, the

main hyper-parameter is the order of the autoregressive model which we suggest to be chosen

based on the turbulence physical time-scales. For accurate estimation of uncertainty in higher-

order statistics and their functionals, we have developed a novel algorithm. As a key feature of

the procedure, accurate estimation and inclusion of the cross-covariances between the

uncertainty estimators of elementary moments is essential.

Figure 19: Profiles of the first- and second-order velocity moments of turbulent channel flow at friction

Reynolds number equal to 300, taken from [25]. The shaded areas show the 95% confidence intervals due

to the variation of grid resolution in the wall-parallel directions.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 38 of 45

6 Workflow Overarching Activities
In addition to the tasks that can directly be assigned to the individual steps of the engineering

workflow, performance engineering and efficient implementation play an essential role in the

use of HPC, especially when targeting the use of systems that consume several megawatts of

electrical energy. Since this is true for all applications executed on large scale HPC resources

independent of their position within the engineering workflow, theses general activities and the

best practices that were found when dealing with engineering applications are grouped together

in the following sections. Besides best practices for node-level and system-level performance

engineering in sections 6.1 and 6.3 respectively, the approaches taken when porting engineering

applications to new architectures can be found in section 6.2.

6.1 Node Level Performance Engineering

During the span of EXCELLERAT new major architectures appeared challenging the virtual

monopoly of Intel that has lasted for ten years. First, the release of the EPYC architecture by

AMD was a game changer; as of November 2021 it represents 20% of the top500 share per

performance. Also, a lot of movement was registered on Arm based architectures (Huawei,

ThunderX, Fujitsu A64FX, AWS graviton, Arm ampere) and is one of the architectures

expected for the European processor.

Porting and benchmarking our code in these architectures yielded miscellaneous results. First,

the AMD architecture being x86 compliant, portability is straightforward (it even uses the intel

compiler if so inclined), but high core count (64) per socket and standard memory bandwidth

(204.8 GB/s per socket) make it a challenging architecture for some codes.

Figure 20: AVBP performance characterisation on AMD Rome processors.

In collaboration with AMD and TGCC, we were able to port and benchmark AVBP in the

IRENE Joliot CURIE system (fig. 5).

Arm architecture is trickier and requires specific compilers which can be even specific for a

given processor type (see A64FX). For our first experience we were fortunate to get access to

multiple systems and mostly used the gnu compiler (version 10 or 11) as they are already known

to the code developers and also offer support for Arm instructions.

Portability using the gnu compiler revealed some surprises as some Fortran or C constructs

although accepted by intel compilers are not strictly compliant to the norm but overall, no

problem was detected. However, performance is very different depending on the flavour of Arm

tested. Only recent systems integrate the vectorisation SVE options and when they do it is not

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 39 of 45

easy to vectorize as the compiler is not always able too. Figure 21 compares the most promising

architectures with Rome and Intel processors on a real simulation using AVBP using a full

single node. Out of the box, using the gnu compiler is fully functional and provides very

acceptable performance. More work is expected in the future as performance analysis tools

catch up to the new architectures and provide more insight into bottlenecks for vectorisation

and data locality errors.

Co-execution (BSC)

We can affirm with quite a certainty that future exascale systems will be heterogeneous,

including nodes with accelerators such as GPUs. As the size of the systems grows, and thus

more nodes are engaged in a single simulation, we can also expect higher variability on the

performance among the computing devices engaged in a simulation. Apart from this explosion

of the parallelism, there are technical aspects related with variability, such as the hardware-

enforced mechanisms to preserve the thermal design limits. In this context, dynamic load

balancing (DLB) becomes a must for the parallel efficiency of any simulation code.

Figure 21: normalized timing (lower is better) for 20M simulation using AVBP using AWS resources.

Figure 22: (Left): Comparison of (balanced) co-execution vs pure GPU execution – elapsed time per MPI

Rank. (Right): Snapshot of Q iso-surfaces of the turbulent flow around an airplane.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 40 of 45

In the first year of the EXCELLERAT project, Alya was provisioned with a distributed memory

DLB mechanism, complementary to the node-level load balancing mechanisms already in

place. The kernel parts of the method are an efficient in-house SFC-based mesh practitioner,

and an online redistribution module to migrate the simulation between two different partitions.

The availability of those capabilities allows to adjust the partition according to runtime

measurements.

We have focused on maximizing the parallel performance of the mesh partition process to

minimize the overhead of the load balancing, to achieve this goal a massively parallel SFC

based mesh partitioner was implemented [3]. We then applied all this technology to perform

simulations on the heterogeneous POWER9 cluster installed at the Barcelona Supercomputing

Centre, with an architecture very similar to that of the Summit supercomputer from the Oak

Ridge National Laboratory – ranked first in the top500 list at that time. In the BSC POWER9

cluster, which has 4 NVIDIA P100 GPUS per node, we demonstrated that we could perform a

well-balanced co-execution using both the CPUs and GPUs simultaneously, being that 23%

faster than using only the GPUs. In practice, this represents a performance boost equivalent to

attaching an additional GPU per node. This research was published at the Future Generation

Computer Systems journal [26] where a full analysis of the code performance is given. Sample

results of the elapsed time per MPI Rank are given in Figure 22 (left), while a snapshot of Q-

vorticity along the wing is shown in Figure 22 (right).

6.2 Porting to New Architecture

When porting to new architectures, especially ones which are novel for HPC, it is important to

ask two questions. Firstly, what is the purpose of doing this port (i.e. what properties will this

architecture give me over and above the hardware currently in use), and secondly what code

level modifications are required to most effectively exploit this new architecture. In

EXCELLERAT there have been numerous successes in porting our applications to numerous

new architectures, including GPUs and FPGAs, and these two architectures demonstrate these

points well.

When porting from CPUs to GPUs the major benefit one will obtain will be that of

computational performance. Put simply, GPUs are engines for floating point arithmetic and

therefore if one’s code is bound by a lack of computation on the CPU then they are a good

technology to consider. Furthermore, GPUs tend to have excellent memory bandwidth and-so

can often effectively keep the compute units (the symmetric multiprocessors) fed with data

sufficiently well. FPGAs by comparison are suited to other code properties, typically where

code on the CPU is bound by memory accesses or other core issues. It is true that GPUs have

excellent memory bandwidth, but if one’s code is bound by memory latency (often due to a

challenging memory access pattern such as many indirect memory accesses) then the tailoring

of the electronics to the application in question can provide significant benefits as we have seen

during the CoE with Nekbone and Alya codes. Whilst the exact choice of profiling tool can be

personal preference to some extent, technologies such as Intel’s Vtune can be highly effective

in highlighting code bound issues and consequently detailed profiling on current architectures

should always be a first step.

GPUs are organised around the principal of vectorisation, whereas FPGAs are organised around

dataflow. This can mean that when porting to such architectures one must fully embrace these

paradigm shifts and enhance their code to match. This can result in very significant algorithmic

level changes, but these are necessary if one is to achieve best performance. Throughout the

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 41 of 45

CoE we have explored in depth techniques to port codes to GPUs and FPGAs, with numerous

lessons learnt and successes achieved. However, it is fair to say that the devil is in the detail

and one of the challenges with the tooling is that it is possible to get code running fairly quickly

on these architectures. Whilst this sounds positive, in reality the performance that one obtains

often leaves a lot to be desired and then significant expertise and insight is required to tune up

the applications to the specific hardware. It is critically important to be aware of the latest

techniques for the architecture that one is targeting, whilst this sounds obvious for more novel

hardware such as FPGAs there is a wealth of experience being developed and disseminated.

Consequently, it can be a challenge to maintain one’s knowledge and ensure that the latest

approaches are being used.

The work done in this CoE exploring the acceleration of NekBone on FPGAs is a good example

of this last point, where approximately a 5000 times difference in performance existed between

the initial port onto FPGAs and the finalised optimised kernel. Similarly, for the GPU

acceleration of Nek5000 and NekBone, the initial GPU port, where the initial OpenACC

implementation was relatively simple to implement but had significant performance problems.

One of the main issues was that as Nek5000 is written as a set of internal maths libraries which

are then repeatedly, often in loops simply adding OpenACC directives to the maths functions

results in many small inefficient kernels called sequentially, which was inefficient, particularly

in the case where the calculation is followed by a reduction. Manually merging these kernels

and then writing the reduction by hand implementation significantly improved the overall

performance of those kernels. It is only when one is drawing in on the top-level performance

that they are beating other technologies, but the danger is that developers observe the initial

performance and then decide it is not worth exploring the technology further.

Another question developers face is the choice of technology to do the porting. This is specially

the case today for GPUs if you have a legacy code. 3 main technologies exist today to

port/develop codes on GPUs with variable pros and cons:

 Pragma based acceleration with OpenACC/OpenMP

 Cuda Library

 Domain Specific Languages / Code generation.

The main divergence between these technologies is the return on investment and the time

involved in development and maintenance and differ greatly on whether you are working on a

legacy code or a new solver.

Pragma based programming via OpenMP and OpenACC offers best return on investment for

legacy codes that cannot invest on a full code rewrite as evidence by the work performance on

EXCELLERAT in the AVBP application (350k, 30-year-old legacy code in Fortran) where an

acceleration of factor 5 full CPU node versus 4 A100 Nvidia GPUs is observer on the Juwels

Booster nodes at JSC and scales up to 1000 CPUs. Some caveats apply though. Pragmas rely

heavily on the compiler implementation and from one version to another fringe behaviour can

be expected. Also, not all compilers offer the same level of implementation: OpenACC is

mostly limited to the Nvidia SDK, OpenMP 5 implementation greatly differs today.

Additionally, pragma-based programming offers the possibility to run the code without

acceleration naturally but also makes it easier for developers to ignore them rendering

maintenance of the code all the more critical.

Cuda library support offers the best performance per investment ratio but often require the

recoding of the whole application making them more viable for new projects or full

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 42 of 45

refactorings. Moreover, each new release of CUDA can require a new porting/development

phase to adapt to the new version.

Finally, domain specific languages (DSL) and code generation can be perceived as the best

tools for new codes today. Indeed, these methods offer the promise of minimising code

refactoring / porting for future generations of developers by abstracting code operators to their

numerical/physical representations. The burden of supporting the architectures is offloaded

completely to the DSL’s developers. Of course, such an approach requires full application re-

write. Kokkos can be seen as a DSL as well although a lower level one as it focuses on memory

mapping and access and not on physical operators.

Nevertheless, all of these approaches have seen considerable success stories and are expected

to be the key for exascale computing.

6.3 System-Level Performance Engineering

The property of strong-scaling (reducing the time-to-solution when the computing resources

are increased), is a primary goal on the development of CFD codes, and particularly for Alya.

A code with good strong scaling will allow to reduce the simulation time when there are more

resources available.

In EXCELLERAT the strong scaling was tested for the use-case U1C2 that consists of a

multiphase reacting flow field of a double-swirl air blast spray flame of a test rig being

constructed at TU Berlin. The performance of a Eulerian-Lagrangian framework, where the

disperse phase is represented by Lagrangian droplets and the gas phase is described by the

Eulerian phase, was analysed. The mesh consisted of 1 billion cells and about 200k Lagrangian

particles. The tests aimed to show the acceleration achieved from using 100 up to 400 nodes of

the MareNostrum IV supercomputer. The parallel efficiency (PE) achieved was 91%. The

MareNostrum nodes are composed of 48 CPU-cores, therefore., the maximum number of CPU-

cores considered was 19200. Note that this is a multi-physics case that includes many physical

Figure 23: Strong scaling performance of the Alya code on the MareNostrum

IV supercomputer for the case U1C2.

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 43 of 45

phenomena: the particle transport, heating and evaporation, the Navier-Stokes equations, the

energy equations, and the transport equations for the controlling variables used in the flamelet

method.

The strong scaling results are shown in Figure 23, the resources used are multiplied by four and

the acceleration achieved is 3.6. The main degradation factor in these cases is the

communications overhead.

Strong scaling using GPU acceleration is even more challenging and depends dually on the

hardware and software implementation on the cluster in parallel to the application. The key to

strong scaling using GPUs is GPU direct support, GPU direct provides direct communication

between NVIDIA GPUs in remote systems avoiding data copies between the GPU and

CPU. On JUWELS Booster, on 4 nodes, an improvement of 20% in time to solution is observed

when enabling GPU direct communication compared to default copy/ CPU MPI

communication.

Figure 24: Strong scaling on U2C3 for AVBP on JUWELS BOOSER (A100) and JEANZAY (V100).

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 44 of 45

7 References

[1] C. Geuzaine and J.-F. Remacle, “Gmsh,” 29 November 2019. [Online]. Available:

http://gmsh.info/.

[2] “OPEN CASCADE SAS,” 29 November 2019. [Online]. Available:

https://dev.opencascade.org/.

[3] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning

Irregular Graphs,” SIAM Journal on Scientific Computing, vol. 20, p. 359–392, January

1998.

[4] C. Chevalier and F. Pellegrini, “PT-Scotch: A tool for efficient parallel graph ordering,”

Parallel Computing, vol. 34, p. 318–331, July 2008.

[5] K. Devine, E. Boman, R. Heaphy, B. Hendrickson and C. Vaughan, “Zoltan data

management services for parallel dynamic applications,” Computing in Science

{\&}amp\mathsemicolon Engineering, vol. 4, p. 90–96, 2002.

[6] R. Borrell, J. C. Cajas, D. Mira, A. Taha, S. Koric, M. Vázquez and G. Houzeaux,

“Parallel mesh partitioning based on space filling curves,” Computers

{\&}amp\mathsemicolon Fluids, vol. 173, p. 264–272, September 2018.

[7] R. Borrell, G. Oyarzun, D. Dosimont and G. Houzeaux, Parallel SFC-based mesh

partitioning and load balancing, arXiv, 2020.

[8] E. Chow, “A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse

Preconditioners,” SIAM Journal on Scientific Computing, vol. 21, p. 1804–1822, January

2000.

[9] E. Chow, “Parallel Implementation and Practical Use of Sparse Approximate Inverse

Preconditioners with a Priori Sparsity Patterns,” The International Journal of High

Performance Computing Applications, vol. 15, p. 56–74, February 2001.

[10] S. Laut, R. Borrell and M. Casas, “Cache-aware Sparse Patterns for the Factorized Sparse

Approximate Inverse Preconditioner,” in Proceedings of the 30th International

Symposium on High-Performance Parallel and Distributed Computing, 2021.

[11] C. Burstedde, L. C. Wilcox and O. Ghattas, “p4est: Scalable Algorithms for Parallel

Adaptive Mesh Refinement on Forests of Octrees,” SIAM Journal on Scientific

Computing, vol. 33, p. 1103–1133, January 2011.

[12] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker and C.

S. Woodward, “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation

Solvers,” ACM Transactions on Mathematical Software, vol. 31, p. 363–396, September

2005.

[13] “DLB Library,” 27 April 2022. [Online]. Available: https://www.bsc.es/research-and-

development/software-and-apps/software-list/dlb-library-dynamic-load-balancing.

[14] J. Duda, “Asymmetric numeral systems:,” [Online]. Available:

https://arxiv.org/pdf/1311.2540.pdf. [Accessed 28 April 2022].

Public

Copyright © 2022 Members of the EXCELLERAT Consortium

Project 823691 EXCELLERAT Best Practice Guide Page 45 of 45

[15] “Zstandard,” [Online]. Available: https://facebook.github.io/zstd/. [Accessed 2021

November 2021].

[16] “BigWhoop,” [Online]. Available: https://projects.hlrs.de/projects/bwc/. [Accessed 28

April 2022].

[17] C. Wenzel, P. Vogler, J. Peter, U. Rist and K. Markus, “Application of a JPEG 2000-

based data compression algorithm to DNS of compressible turbulent boundary layers up

toReθ=6600,” 2020.

[18] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE Transactions on

Visualization and Computer Graphics, vol. 20, pp. 2674-2683, 2014.

[19] A. Loddoch and J. Schmalzl, “Variable quality compression of fluid dynamical data sets

using a 3-D DCT technique: DATA COMPRESSION,” Geochemistry, Geophysics,

Geosystems, vol. 70, 2006.

[20] S. Russo and P. Luchini, “A fast algorithm for the estimation of statistical error in DNS

(or experimental) time averages,” Journal of Computational Physics, vol. 347, p. 328–

340, October 2017.

[21] T. A. Oliver, N. Malaya, R. Ulerich and R. D. Moser, “Estimating uncertainties in

statistics computed from direct numerical simulation,” Physics of Fluids, vol. 26, p.

035101, March 2014.

[22] C. Gscheidle, S. Rezaeiravesh, J. Garcke and P. Schlatter, “In-situ estimation of time-

averaging unvertainties in turbulent flow simulations,” in Workshop "Multi-Scale, Multi-

physics and Coupled Problems on highly parallel systems (MMPC)", Kobe, 2022.

[23] S. Rezaeiravesh, R. Vinuesa and P. Schlatter, “UQit: A Python package for uncertainty

quantification (UQ) in computational fluid dynamics (CFD),” Journal of Open Source

Software, vol. 6, p. 2871, April 2021.

[24] S. Rezaeiravesh, R. Vinuesa and P. Schlatter, An Uncertainty-Quantification Framework

for Assessing Accuracy, Sensitivity, and Robustness in Computational Fluid Dynamics,

arXiv, 2020.

[25] S. Rezaeiravesh, R. Vinuesa and P. Schlatter, “On numerical uncertainties in scale-

resolving simulations of canonical wall turbulence,” Computers

{\&}amp\mathsemicolon Fluids, vol. 227, p. 105024, September 2021.

[26] R. Borrell, D. Dosimont, M. Garcia-Gasulla, G. Houzeaux, O. Lehmkuhl, V. Mehta, H.

Owen, M. Vázquez and G. Oyarzun, “Heterogeneous CPU/GPU co-execution of CFD

simulations on the POWER9 architecture: Application to airplane aerodynamics,” Future

Generation Computer Systems, vol. 107, p. 31–48, June 2020.

[27] S. R. J. G. a. P. S. C. Gscheidle, In-situ estimation of time-averaging uncertainties in

turbulent flow simulations, Kobe, 2022.

