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Executive Summary 

This deliverable reports on the developments and significant achievements in work package 4 

throughout the EXCELLERAT project. The work package deals with the development of 

EXCELLERAT's enhanced services; co-design, visualization, data analytics and management, 

in essence developing tools for an application's entire lifecycle. 

The significant achievement during the project has been to formulate prototypes of the 

enhanced services outlined in deliverable D4.2; scalable in-situ visualization workflows for 

both interactive and non-interactive analysis, in-situ data analytics and uncertainty 

quantification frameworks and a newly designed platform for HPC specific transfer and data 

management. These services have been developed and implemented based on use-case’s needs, 

either using derived model problems or scaled-down formulations of the full use-cases.  In the 

final phases of the project, developed services have advanced past the prototype stage and have 

been integrated and validated within the full use-cases in EXCELLERAT. 
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1 Introduction 
This document reports on the progress and significant achievements in work package 4 

throughout the EXCELLERAT project. The work package deals with EXCELLERAT’s 

enhanced services: co-design, visualization, data analytics and management, in essence 

developing tools for an application’s entire lifecycle.  

As described in deliverable D4.2 Report on the Service Portfolio, tools and methods developed 

within this work package are derived based on the common needs of EXCELLERAT’s use-

cases for solving engineering simulations at scale, as outlined in their so-called user-stories. 

Given the diversity of EXCELLERAT’s core-codes, particular focus is laid on formulating 

services which are both code- and application-agnostic, enabling reuse and integration into 

several of the core-codes. Marketable services developed in this work package will be identified 

by work package 6 for inclusion into the EXCELLERAT's service portfolio.  

The deliverable is structured as a progress report. Each task in work package 4 gives details of 

the work done, and of the progress towards realising the envisioned services outlined in 

deliverable D4.2 Report on the Service Portfolio. 

2 Task 4.1: Co-design 
The Co-Design Service continued to support our Reference Applications, and the service 

offering within the portal has been improved dramatically. 

The EXCELLERAT Service Portal contains the Co-Design Service offer1 within the 

Consultancy Topics.  This offer has been re-worded to encourage both SMEs and less 

experienced potential clients via more welcoming text and imagery.  Moreover, a joint effort 

with work package 5 to reword and refactor the sidebars of this co-design service offer has led 

to improvements throughout the Service Portal. 

As previously declared in D4.6 Report on Enhanced Services Progress, EXCELLERAT’s Co-

Design Service follows an indirect co-design paradigm, wherein clients (including Core 

Partners, of course) gain access to the early release of state-of-the-art hardware, which is 

available typically due to a close working relationship between the vendor and the Core Partner. 

This avoids a direct co-design paradigm, given vendors typically will not alter their hardware 

to benefit a small set of applications. This indirect co-design paradigm permits our Co-Design 

Service to exploit trends in software and hardware and match them to the code design issues of 

our clients’ applications.  To date, all clients have been Core Partners along with their Reference 

Applications running our use cases. 

We have maintained our Co-Design Working Group, which monitors all co-design activities. 

These activities occur across many other Tasks, specifically,  

 T3.1: Node-level performance optimisation,  

 T3.2: System-level performance towards exascale, 

 T3.4: Test lab for emerging technologies, 

 T3.5: Validation and benchmarking suites, 

 T4.1: Co-design, 

 T4.3: Data analytics,  

                                                 

1 https://services.excellerat.eu/viewservice/1 

https://services.excellerat.eu/viewservice/1
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 T5.5: HPC service provisioning, 

where T4.3 provides key linear algebra routines to test alongside our Reference Applications; 

T3.4 helps locate and document emerging technologies; T5.5 provides access to cutting edge 

platforms or emulators of future platforms; T3.5 helps to determine bottleneck kernels via 

profiling the Reference Applications; T3.1 and T3.2 perform the node-level/accelerator tests. 

Lastly, it should be noted that we outsource required effort through our ongoing collaborations 

with the POP CoE [1].  

The Co-Design Working Group agreed to the following methodology:   

 Firstly, target Reference Applications are chosen.  

 Full applications may be reduced to smaller proxy applications, 

o where each proxy is a small bundle of highly portable source code, with 

example input and output files,  

 these used to be referred to as mini-apps 

o which retain the computational characteristics of the full simulation, e.g., 

computational kernels are retained 

 key data movements epochs, such as I/O,  might also be retained. 

o This can circumvent irrelevant porting issues that can arise when addressing 

novel architectures. 

 The full code, or its proxy, is then ported to the existing hardware or emulators of 

future hardware, 

o where associated libraries may also need to be installed. 

 The target simulation is also provided, 

o and ported code is optimised if time permits. 

 Initial profiling is then performed to locate kernels of interest.  

 Profiling and performance are measured 

o using emerging libraries where possible. 

 Code adaptations and/or improvements are investigated and reported back to the 

owners. 

 

Since M25, the target Reference Application codes involved in co-design have been identified 

as Alya, AVBP, CODA, and a particular dense linear algebra SVD solver from ScaLAPACK, 

namely pdgesvd, as this is the key routine employed by the DMD method, described in Task 

4.3 Data Analytics (see Section 4).  

2.1 Co-Design Management 

The co-design task leader created a live spreadsheet to list all the cutting-edge platforms for co-

design offered by the Core Partners, which is now maintained by Task 3.4's test lab for emerging 

technologies. The list of co-design platforms is augmented by the "EuroHPC JU Benchmark 

and Development Access Calls", which provides an access mechanism to even more cutting-

edge platforms2. 

The leader of the Co-Design Working Group established and maintained an active collaboration 

with another CoE, namely CompBioMed [2], and attended their bi-monthly meetings when 

possible. Excellerat lead the Co-Design session at the First joint CoEs Technical Workshop, 

                                                 

2 https://prace-ri.eu/hpc-access/eurohpc-access/eurohpc-ju-benchmark-and-development-access-calls/ 
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Jan 2021, in collaboration with HiDALGO [3] and ChEESE [4]. The leader also represented 

EXCELLERAT at a round-table discussion of co-design amongst many CoEs, chaired by 

FocusCoE, and held within HiPEAC21. 

Our living document, which started life as a Word document in BSCW, was moved to our 

internal wiki to avoid the debilitating “single-editor bottleneck”, and has eventually been moved 

to the EXCELLERAT edocs repository, as the wiki was found to require overhauling to allow 

tables. 

Finally, we had planned to organise a joint Birds of a feather (BoF) session with ETP4HPC [5] 

at ISC’21; however, this was postponed due to Covid-19. EXCELLERAT was invited to join 

the FocusCoE co-design workshop at ISC’22; however, EXCELLERAT participation depends 

on the organisers enabling virtual attendees. 

The remainder of this Section on co-design describes the novel hardware currently employed 

by the Co-Design Working Group, along with a high-level overview of the status of each of the 

participating Reference Applications. 

2.1.1 Cutting edge hardware employed to date 

A full list of current hardware available to the CoE was created by Task 4.1, is maintained by 

Tasks 3.4 and is available in the edocs repository within the live spreadsheet.  Regarding co-

design, the hardware involved to-date are as follows, listed per HPC provider. 

 TGCC 

 ARM Thunder X2 

 Fujitsu A64FX 

 AMD EPYC cluster at TGCC (Très Grand Centre de calcul du CEA).  

 BSC 

 RISC 

 MN4 CTE-ARM 

 MN4 CTE-AMD 

 MN4 CTE-Power, Power9 + GPUs cluster 

 CINECA 

 IBM Power 9 plus NVIDIA Volta GPUs, MARCONI100 (M100) 

 DLR 

 AMR CPU and GPU clusters 

 E4 

 ARM Marvell ThunderX2 and NVIDA Tesla GPUs, ARMIDA, from EPI 

 EPCC 

 HPE Cray EX : ARCHER2 

 ARM Cavium ThunderX2 cluster from HPE  

 FPGA: Xilinx’s Alveo U280 FPGA cluster 

 HLRS 

 HPE Apollo 6500 Gen 10 Plus 

 HPE Apollo 

 NEC Vector machine: SX-Aurora 

 CSC 

 LUMI 

 LUMI C 
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 IDRIS 

 HPE CPUs 

 HPE GPUs, JEANZAY 

 FZJ 

 Juawei 

 Hauwei Cavium Thunder X2 from EPI 

 Jauwei 

 Hauwei Kunpeng 920 (ARM) 

2.2 Alya/BSC 

2.2.1 Cache-aware Sparsity Patterns for the Factorized Sparse 
Approximate Inverse Preconditioner in multi-node executions  

Conjugate Gradient is one of the methods of choice for the iterative solution of symmetric and 

positive definite linear systems. Part of its effectiveness relies on finding a suitable 

preconditioner that accelerates its convergence. Factorized sparse approximate inverse (FSAI) 

preconditioners [6] [7] are a prominent option with the advantage that, relying on the sparse 

matrix-vector multiplication (SpMV) kernel for its application, they are easily parallelizable 

and portable to modern computational architectures.  

An essential element of FSAI preconditioners is the definition of the sparsity pattern where the 

inverse is approximated. This definition is generally based on numerical criteria. In 

EXCELLERAT, BSC has introduced complementary architecture-aware criteria that also 

increase the computational efficiency of the preconditioner. In particular, we define cache-

aware pattern extensions that do not generate additional cache misses when accessing the 

multiplying vector. In the third year of the project, we have particularly focused on applying 

this technique on distributed memory parallelisations, including the minimization of inter-node 

communications.  

An illustration of this idea is shown in Figure 1, where new cache-friendly entries are added in 

the halo region that avoid incurring in additional communication requirements. The 

effectiveness of this methodology has been tested in a set of 39 matrices from the SuiteSparse 

Matrix Collection [8] [3]. We include experiments for symmetric positive definite (SPD) 

Figure 1: FSAIE-Comm. Graphical illustration of halo region where entries can also be added in a cache-

friendly communication-aware extension. Black squares correspond to initial entries. 
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matrices with the number of non-zero entries ranging from 1M to 40M. Tests were performed 

on the CTE-ARM cluster composed of nodes with an ARM 48-core Fujitsu A64FX CPU. In 

this case, the CPUs have 256Bytes cache lines allowing large cache-aware extensions. On 

average, FSAIE-Comm allows to reduce iterations-to-convergence up to 31% and time-to-

solution up to 26%. 

Figure 2 displays the time-to-solution improvement for each matrix of the data set when using 

the best 𝐹𝑖𝑙𝑡𝑒𝑟 and when using a 𝐹𝑖𝑙𝑡𝑒𝑟 value of 0.05. Results show that all matrices of the data 

set take advantage of the proposed cache-friendly extensions, achieving in some cases a time-

to-solutions decrease up to 60%.  

2.2.2 Porting Alya to FPGA 

We have begun the process of porting Alya to an FPGA cluster by first considering one of its 

modules, namely nastin. This process is presented in detail in D3.3 Final Report on Exa-

enabling enhancements and benchmarks and summarised here. The module nastin is a key 

component of many Alya simulations, is used to model incompressible flow and can represent 

64% of runtime for representative benchmarks.  

Once we had obtained optimal single kernel performance, we explored additional benchmarks 

and multiple FPGA kernels. There are two versions running on the FPGA, one with the entirety 

of the matrix assembly code on the FPGA and the other with the partial kernel present placing 

the cartesian derivatives function on the CPU. The latter is helpful as whilst cartesian 

derivatives is responsible for less than 5% of the overhead of the kernel when profiling, it 

accounted for around 20% of the usage on the FPGA. Consequently, these two approaches limit 

us to either two or three matrix assembly engines (see D3.3 for details), for the entirety of the 

kernel or the partial kernel on the FPGA respectively. 

For this work, we use a Xilinx Alveo U280 FPGA. For comparison, we run the code on a 24-

core Xeon Platinum (Cascade Lake) CPU, and NVIDIA Tesla V100 GPU. On the CPU, the 

code has been parallelised via OpenMP (using GCC 8.3), while on the GPU it uses OpenACC 

(using NVIDIA compiler version 20.9). All reported numbers are averaged over three runs. 

Figure 2: Time decrease of the FSAIE-Comm vs. FSAI for the best 𝐹𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 

0.05 𝐹𝑖𝑙𝑡𝑒𝑟 value (orange columns) on the A64FX architecture. 
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Figure 3: Performance comparison between CPU, GPU, three kernels on the FPGA (with cartesian 

derivatives calculation on CPU) and two kernels on the FPGA (all calculations on the FPGA). Higher is 

better (higher performance). 

 

Figure 3 illustrates the overall performance for different benchmarks running on the 24-core 

CPU, V100 GPU and FPGA. It can be seen that the FPGA version of nastin is highly 

competitive against the GPU for larger problem sizes and consistently out-performs the CPU. 

The three engine FPGA approach is preferable to the two-engine approach due to the increased 

concurrency that it provides. 

Figure 4 reports an average power draw of these different configurations. We only report 

numbers for the largest benchmarks as the others ran too quickly to obtain reliable power 

figures. The CPU draws the most power, while the GPU consumes slightly less but still more 

than 160 Watts for the largest benchmark. The FPGA power draw is significantly less than the 

other technologies, with three engines drawing 100 Watts for the largest benchmark and two 

engines drawing 70 Watts. The difference in FPGA power draw can mostly be ascribed to the 

CPU, which consumes more power for the three-engine approach as the cartesian derivative 

calculations are on the CPU. By contrast, even though the two-engine approach still processes 

input and accumulates the resulting data on the CPU, this results in significantly less workload 

than the threading floating point operations required by the three engine approach on the host. 
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Therefore, power consumption is much less.

 

Figure 4: Power draw comparison between CPU, GPU, three kernels on the FPGA (with cartesian 

derivatives calculation on CPU) and two kernels on the FPGA (all calculations on the FPGA). Lower is 

better (less power draw). 

2.3 AVBP/CERFACS 

Co-design and performance optimisation have been focused on the whole AVBP code since 

D4.6. Two main axis of performance engineering have been studied: ARM-based architectures 

and GPU acceleration using NVIDIA hardware.  

The first fully functional port of AVBP using OpenACC on NVIDIA hardware was released to 

the users in September 2020. Since then, focus has been maintained on performance 

optimisation and porting missing execution branches towards the completion of one of our use 

cases, namely the simulation of a full gas turbine combustion chamber on accelerated hardware.   

 

Table 1: Acceleration factor on full CPU versus 4 V100 GPUs. 

Table 1 shows the acceleration factor achieved for each release since 7.7 until the release of 7.9 

in Q4 2020.  The industrial combustion chamber (C.C) corresponds to full gas turbine 

combustion chamber use case..  
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Since node level performance was excellent, we also ported and tested the GPU code on the 

JUWELS BOOSTER system at JSC equipped with A100 accelerators. Porting was automatic 

without any changes required to the code and yielded a 2-times-acceleration compared to V100 

GPUs (See Figure 5). 

 

Figure 5: Strong scaling on V100 and A100 using the full gas turbine combustion chamber use case. 

Future work will focus on adapting the existing accelerated workflows using OpenACC to a 

portable runtime such as OpenMP 5 to be compatible with AMD and Intel accelerators. These 

work has started using a co-design bilateral collaboration with Intel and Lenovo and will be 

continued in Excellerat 2 should the proposal be accepted. 

In parallel to GPU, we focused on emerging ARM technology. The AVBP code was ported and 

benchmarked on the ARM Ampere and AWS Graviton 2 architectures in collaboration with 

ARM Ltd and AWS. (See Figure 6). 
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Figure 6: Normalized timing (graviton 2 performance as reference) on the full gas turbine combustion 

chamber use case using a static mesh and a single full node for each architecture. 

 

 

These results confirm the view that ARM-based architectures are almost on par with traditional 

Intel and AMD chips.  

2.4 CODA/DLR 

To test CODA's computational kernel on novel architectures and accelerators, a proxy has been 

created, thereby removing the need to adapt the entire workflow of CODA. This proxy contains 

a set of representative benchmarks that evaluate the Sparse Linear Systems Solver library 

(Spliss), which runs CODA’s computationally intensive linear solver. 

GPU cluster 

The first focus during the reporting period (since D4.6) was on the performance evaluation and 

optimization on GPUs. After the numerical stability and correctness was verified, the initial 

performance was evaluated on up to 16 NVIDIA V100 GPUs and a detailed performance 

analysis was carried out to identify potential performance bottlenecks. After that, Spliss has 

been optimized and re-analyzed multiple times in a co-design cooperation with NVIDIA. 

Optimizations include among others the inclusion of CUDA-aware MPI and GPUDirect, the 

improvement of host-to-device copies and the inclusion of CUDA multi-process service (MPS) 

to allow more flexibility in the allocation of CPUs and GPUs. 

Finally, Spliss on GPUs was evaluated again. The current version achieves a speedup of 4.2 to 

4.4 in a node-wise comparison of two Intel Xeon 6230 (40 cores) vs. 4 NVIDIA V100 GPUs, 

which is a speedup of 2.4 to the initial version. In addition, Spliss was evaluated on the 

JUWELS BOOSTER System at JSC and achieved a very good parallel efficiency of 63% on 

128 NVIDIA A100 GPUs. 
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AMD cluster 

The second focus during the reporting period was on the scalability evaluation and optimization 

on DLR’s main HPC system CARA, which is based on the AMD Naples architecture. The used 

test case solves the Reynolds-averaged Navier-Stokes equations (RANS) with a Spalart-

Allmaras turbulence model in its negative form (SA-neg). The test case runs on an unstructured 

mesh from the NASA Common Research Model (CRM) with about 5 million points and 10 

million volume elements. The mesh is rather small, which has been chosen for a strong 

scalability analysis of Spliss (fixed problem size). Production meshes would be at least 20 times 

larger and accordingly achieve comparable efficiency on much higher scales. 

During the reporting period, the scalability of Spliss has been further improved: For the rather 

small mesh employed, Spliss achieves about 71% parallel efficiency on the largest available 

partition on CARA with 512 nodes and 32,768 cores. Before EXCELLERAT, Spliss achieved 

60% parallel efficiency on CARA. 

2.5 Nekbone (Nek5000)/CINECA,KTH 

The Reference Application Nek5000 has a mini-app entitled Nekbone [9] which is used for co-

design. 

2.5.1 HPC architectures at CINECA and E4 

Two different test campaigns have been conducted on the Nekbone code. The first campaign 

involves a comparison between different machines and architectures without accelerators. The 

tested machines were Galileo (Intel Broadwell 36 cores), Marconi A3 (Intel Skylake 48 cores), 

Marconi 100 (M100) on Power9 CPUs (IBM Power 9), and ARMIDA (E4 ARM 64). 

The results obtained with Marconi A3 and Galileo are very similar, and hence only results from 

Marconi A3 will be shown. On ARMIDA, different compilers (ARM and GCC) have been 

tested and no significant differences have been found. 

The second test campaign involves only M100 with accelerators (NVIDIA V100 GPUs), where 

weak and strong scalability tests have been performed with different strategies for the code 

porting. 

Nekbone is the proxy distilled from Nek5000 to the aim of reproducing the behaviour of its 

principal computational kernel. The target of this code is to test the performance without the 

overhead of the whole software. Nekbone is written mainly in fortran77 and is a spectral (high 

order) fluid-dynamic solver for the uncompressible Navier-Stokes equations.   

The parameters involved in this test campaign are nx=10 and 16, where nx is the polynomial 

degree, and nelem=1024 and 3584 where nelem is the number of elements assigned to each 

GPU. 

The first campaign compared the performance with the single node results in [10], performed 

on Kebnekaise,, a machine at HPC2N in Sweden with a 28-core Skylake CPUs. In [10], one 

conclusion is a recommendation to use 16 to 128 elements per core in order to achieve optimal 

performances. Note, 9th order polynomials (nx=10) have been used. 
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Figure 7: Single node results obtained during CINECA test campaign. 

Figure 7 shows the results obtained by CINECA, which show higher Gflops than on 

Kebnekaise, labelled as “SKL 48 cores/node”, as reported in [10]. Moreover, Marconi A3 

(Power9, SKL 48 cores) is the best performing machine for any number of elements. 

The first campaign continued with the weak scaling tests using CPUs, performed by keeping 

constant the number of elements per core (128 per node).  Results are displayed in Figure 8. 

 

Figure 8: CPU-only multi-node weak scaling. 

 

As it can be seen from Figure 8, the best performances have been achieved with M100  with 

SMT disabled. The results here are similar to [10]. 

The second campaign with weak scaling tests on a single GPU node, performed on M100 using 

3 different GPU porting strategies: OpenACC, OpenACC + CUDA Fortran (only for PGI 

compiler), and OpenACC + CUDA C. All these tests have been performed on a single node, 
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using 1 GPU accelerator per MPI task, with 1 and 4 tasks.   A “better performance for higher 

programming effort trend” is clearly visible in Fehler! Verweisquelle konnte nicht gefunden 

werden. and Figure 10: Best performances have been obtained with OpenACC + CUDA C. 

 

 

Figure 9: Weak scaling single-node with 1 GPU. 

 

 

Figure 10: Weak scaling single-node with 4 GPUs. 

 

 

The most critical part of the porting is the mapping between MPI processes and the GPUs, 

which has been enforced directly in the code to achieve results similar to [10]. A non-optimal 

mapping can reduce performance by 2 orders of magnitude. The performances obtained are 

slightly lower than [10], but can be improved via tuning simulation parameters. 
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On multi-node tests: with nx=16 and nelem=1024, where it was seen that “OpenACC” and 

“OpenACC + CUDA Fortran” both scaled very well, with similar performance; however, 

nx>10 is usually not employed in real-world cases. Indeed, “OpenACC + CUDA C” does not 

run for nx>10. Tests with nx=10 have been performed (Figure 11); here, performance is lower 

than with nx=16. Moreover, “OpenACC” shows lower scalability above 256 GPUs. 

 

Figure 11: Weak scaling multi-node (polynomial degree 9, elements per GPU 1024). 

 

To improve the overall performance, computational intensity was increased by increasing 

nelem to 3584 (See Figure 12). It was noted that nx=10 with nelm=3584 gave almost the same 

performance as nx=16 with nelem=1024. The pure OpenACC version was found to be unstable 

for nelem=3584, and hence the results have been omitted in Figure 12. 

 

Figure 12: Weak scaling multi-node (polynomial degree 9, elements per GPU 3584). 
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Figure 13 shows results for “OpenACC” with nx=16 and nelem=1024 and “OpenACC + CUDA 

C” with nx=10 and nelem=2584. The entirety of the M100 machine was employed. The 

simulation reached a peak of about 800 Teraflops on 3792 GPUs. Results from “OpenACC + 

Fortran C” were found to be unstable and are not shown. The two approaches have similar 

performance, and both start deviating from linear behaviour at above 1024 GPUs. 

 

Figure 13: Weak scaling M100 full machine. 

Finally, for strong scaling tests, the GPU count tested runs from 32 up to 1024.  The lower 

bound is the lowest possible for the target simulation, while the upper bound is employed, as 

all codes became unstable when employing higher GPU counts.. As it can be seen from Figure 

14, the three approaches are similar, and the scalability is approximately linear. 

 

Figure 14: Strong scaling multi-GPUs. 
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2.6 ScaLAPACK/RWTH 

RWTH developed a user-friendly modal decomposition toolkit to efficiently perform dynamic 

mode decomposition (DMD) and proper orthogonal decomposition (POD) on pre-Exascale 

HPC systems in EXCELLERAT.  

The computationally most expensive part of the modal decomposition algorithms is an 

economy-sized singular value decomposition (SVD) of the snapshot matrix. The snapshot 

matrix is a tall (“skinny”) matrix containing the time-resolved flow field data at each mesh point 

of the flow field with a size of up to O(109) times O(103) entries for large scale investigations. 

To guarantee an efficient postprocessing workflow using the modal decomposition toolkit, 

minimising the computational time required for the SVD is essential. To this end, different SVD 

algorithms have been implemented and tested as described in Section 4. The implementation of 

the various SVD algorithms is based on the LAPACK [11] and ScaLAPACK [12] libraries. In 

order to test the performance on different hardware systems, a proxy was developed, which 

encapsulates the SVD from the rest of the modal decomposition algorithm,. The proxy was 

ported to the IBM-based M100 cluster at CINECA. To guarantee the best performance, the 

original LAPACK and ScaLAPACK implementations were replaced by the IBM-specific 

Engineering and Scientific Subroutine Library (ESSL). To further reduce the computational 

time, the proxy was ported to GPUs using the MAGMA Linear Algebra Library. In more detail, 

the core part of the SVD algorithm, which uses an eigenvalue decomposition of the cross-

product matrix (see Section 4), was shifted to the GPUs leading to a fourfold increase in speed 

as illustrated in Figure 15.  

The investigations revealed that a strong limiting factor for the SVD on GPUs is the restriction 

of the available memory. This restriction can possibly be reduced by a currently developed 

library called SLATE [13] which will be able to run on distributed-memory environments 

extending the ScaLAPACK library to GPUs. 

 

Figure 15: Execution time used by the SVD via eigenvalue decomposition of the cross-product matrix on 

CPUs and GPUs 

M100: 

2 x IBM POWER9 AC922 per node 

• 16 cores @ 3.1 GHz per CPU 

• 256 GB RAM per node 

4 x NVIDIA Volta V100 GPUs per 

node (16 GB) 

  



 Public 

Copyright © 2022 Members of the EXCELLERAT Consortium 

 

Project 823691 EXCELLERAT Deliverable D4.7 Page 25 of 63 

 

 

2.7 Summary of Co-Design Activity 

The WP-transversal Co-Design Working Group and the Co-Design Task (Task 4.1) have 

contributed to EXCELLERAT’s Advanced Services and have produced the Consulting Service: 

Co-Design Service for Engineering Applications.  On the software co-design side, based on the 

Reference Applications and other relevant applications and libraries of the engineering 

workflow, the operations, kernels and algorithmic features have been characterised. These are 

common and widely used in engineering applications demanding large amounts of 

computational time. On the hardware side, we are cooperating with original equipment 

manufacturers and system integrators considering the complete hardware bandwidth from 

standard x86_64 architectures to ARM CPUs, GPUs, NEC Vector processors down to FPGAs. 

Thanks to our efforts over the last year, we have maintained our agreed methodology, as stated 

in the Introduction to this Section, wherein the client’s application (or proxy) is ported to our 

collection of cutting edge HPC platforms, and the required code-adaptations are then fed back 

to the client. 

To-date, we have exercised our nascent Co-Design service using CoE members.  As such, our 

clients have been our own Reference Applications owners. As described in this Section five 

applications have been exploiting our Co-Design Service, two of these having a proxy versions 

(one created since M24). As described above, four of the applications have now been ported to 

a number of novel machines, including CPU clusters, GPU clusters, and an FPGA cluster, and 

initial results have been highly promising. The act of porting was either performed by the 

owners themselves or, for two of the applications, namely Alya and Nekbone, by CoE members 

at other core partner sites.  For the latter case, the required code adaptations were fed back to 

the code owners. 

Finally, we are proud to continue to provide consulting for software and systems co-design. 

This service offering has been improved and is currently available within the Co-Design 

Engineering Software- and System-Design service (see D4.2 and D1.6, Reports on the Service 

Portfolio for a more detailed description). 
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3 Task 4.2: Visualization 
In order to focus on I/O on a manageable level and to supervise simulations during runtime, the 

main goal of this task has been set as the enablement of in-situ post-processing capabilities in 

selected applications. 

One tool chosen for this purpose is Vistle [14] for which two in-situ interfaces have been 

developed. The first one is the LibSim interface used by VisIt [15] as outlined in D4.2. The 

second interface is obtained via the SENSEI [16] framework. In D4.2 we described an approach 

made using Catalyst [17], but this was abandoned. This decision was made because SENSEI 

follows a similar approach as Catalyst in terms of the simulation data adapter but also provides 

an interface for post-processing backends like Vistle and is, therefore, more flexible. In this 

project, a backend adapter for Vistle was developed and Nek5000 was instrumented with 

SENSEI. 

While Vistle is focused on interactive visualization in 3D virtual environments, the other post-

processing tool developed in this project is a High-Performance Computing analysis tool 

(PAAKAT). This tool allows a straightforward real-time handling of data arisen from 

simulations with pre-configured algorithms based on the Visualization Toolkit (VTK) [18].  

3.1 Interactive in-situ visualization with Vistle 

Vistle implements a modular architecture, where every data/-source, -filter or -sink in the post-

processing pipeline is represented as a Vistle module. In multi-process mode, these modules 

run as separate processes that communicate and share their data via shared memory (SHM). 

Therefore, to retrieve data from simulations, the data must be copied to a Vistle-controlled SHM 

segment. 

In single-process mode all modules run in a separate thread of the single main process. In this 

mode, data objects are passed on directly via pointers. This would theoretically allow direct 

usage of simulation data, but practically Vistle’s internal data representation is not yet suitable 

for input of data allocated outside of Vistle. Also, these threads use MPI independently, 

MPI_Init_thread with MPI_THREAD_MULTIPLE is required. Running Vistle in single-

process mode, coupled with a simulation, requires the simulation to initialize its MPI 

environment accordingly. 

A connected simulation is represented in the Vistle pipeline as a regular Vistle module, as shown 

in Figure 16. These modules only request simulation data for the connected data ports and in 

configurable intervals. Therefore, only the requested data is converted and passed to the Vistle 

pipeline. These connections, the following pipeline modules, as well as the in situ-modules’ 

parameters can be changed at simulation run-time to provide maximal flexibility. The cost of 

this flexibility is the necessity of transforming and copying the simulation data into Vistle’s 

representation. While the computational overhead is expected to be rather small, the memory 

overhead can be huge, especially if multiple time steps are kept for visualization.   
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Figure 16: Connected LibSimController-module in Vistle. 

3.1.1 LibSim interface for Vistle 

The LibSim interface consists of a small library that is statically linked to simulation codes. 

The simulation uses this library to pass data retrieving callbacks to the post-processing back-

end. The interface passes around raw data-array pointers and therefore avoids VTK. Once such 

a simulation starts, it uses a connection socket that waits for the back-end to connect. After the 

connection, the static library dynamically loads a run-time library. This is where Vistle 

intervenes through replacing VisIt’s libsimV2 runtime library with an own implementation. 

This dynamically linked library manages the communication with the Vistle module and the 

data conversion from LibSim to Vistle. A brief user guide on how to use Vistle’s LibSim 

interface is presented in the Appendix of this deliverable (see Section 9.2.1). 

3.1.2 Vistle post-processing backend for SENSEI 

SENSEI provides an interface that post-processing back-ends can adapt, to connect to SENSEI 

instrumented simulations. At the start of a simulation, used back-ends can be configured via 

SENSEI’s configurable analysis adapter. The SENSEI interface adapted from Vistle converts 

the VTK objects provided by SENSEI simulations to Vistle-objects, which are then inserted in 

the Vistle pipeline. While the LibSim interface allows simulations to register arbitrary 

commands, this interface only features the basic run and pause commands. A brief user guide 

on how to use Vistle’s SENSEI interface is presented in the Appendix of this deliverable (see 

Section 9.2.2). 

3.1.3 In situ Visualization with AMR version of Nek5000 

Due to the developments on Nek5000 described in D2.4 Final Report on Reference 

Applications Outecomes, the existing LibSim interface is no longer compatible with the up-to-

date version of Nek5000. For example, LibSim does not support adaptively refined grids. 

Therefore, VTK-based interfaces have been implemented for Nek5000 to allow in-situ analysis 

with the developed Nek5000 version. A Catalyst interface was developed to generate pre-

configured images. For interactive use with Vistle, the SENSEI interface was also integrated. 

Simulation data

Commands
provided by the
simulation

Module parameter
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First, to utilize SENSEI, the build system for Nek5000 had to be changed. Nek5000 ships with 

its own make file generator scripts that manage the compilation and linking. Since the Nek5000 

repository usually self-contains all Nek5000 dependencies, this works fine. Linking to SENSEI 

and its dependencies, which themselves depend on the activated analysis backends, is way more 

complex. Therefore, a CMake-based build system generator was introduced to help locating the 

additional dependencies. 

Once linked to SENSEI, the Nek5000 implementation of the SENSEI data adaptor updates 

pointers to the data fields of the Nek5000 simulation once per cycle. Then, control is passed to 

the analysis adapters. Only if they request data, data conversion to VTK is performed.  

For backends such as Vistle, there seems to be no way to get information from a simulation 

through SENSEI, once a mesh has been refined (the transfer can only be optimized for 

completely static meshes). While a cached mesh is reused inside of Nek5000 if the mesh did 

not change, the backends still have to treat every received mesh as if it were new. This causes 

some extra overhead for Vistle, since the meshes have to be transformed and copied to Vistle’s 

data representation. 

First runs of a pre-production version of the Nek5000 rotor case (C1U3) (described in D2.2 

Report on Reference Applications Outcomes) with 346,336 total quadrants have been executed 

on the HPE Apollo (Hawk) at HLRS, using 8 nodes and 256 MPI processes. A cutting surface 

as well as in iso surface of the lamda2 domain have been generated in-situ with Vistle and 

streamed to a visualization cluster at HLRS to render. 

3.2 In-situ visualization with PAAKAT 

The PAAKAT (“Looking at”) library has been designed as an HPC tool which encourages 

scalability and portability of in-situ analysis in large-scale simulations. The emphasis is on 

reducing such simulations' output data during run-time by using algorithms already available 

in VTK. The main difference regarding the great deal of effort made to develop software 

specialized in the solution of in-situ visualization and analysis is related to the fact that 

PAAKAT encourages scalability and portability. This has been done by focusing on data arisen 

from VTK filters, while it obviates rendering in the ParaView [19] source code (version 5.6). 

Modifications performed in ParaView encourage the use of the C++ VTK API. As a 

consequence of these modifications, filters must be implemented by using C++ instead of the 

Python [20] scripts created by ParaView. 

Using the whole ParaView framework, compilation times became a real issue. Tests on four 

nodes of MareNostrum 3 at BSC [21] with a total of 64 cores resulted in a compilation time of 

about 1,5 hours. By obviating rendering and therefore avoiding the need of big third-party 

libraries like Python and/or OpenGL [22], the compilation time was reduced to only nine 

minutes. 

A list of the compiler options used to achieve this result are shown in Figure 17. These options 

have been successfully used in two supercomputers, Beskow at KTH and Nord III at BSC. As 

future work, more computer systems and compilers should be tried. 
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Figure 17: Compiler options for modified ParaView 5.6. 

3.2.1 MPMD-VTK example 

In this example, two codes are run by using the Multiple-Program, Multiple-Data (MPMD) 

programming model, while an interpolation procedure is performed. 

A given source mesh is used to perform a turbulence simulation, while a principal component 

analysis (PCA) is carried out through a destination mesh. Input files for this problem have been 

supplied by Christian Gscheidle (Fraunhofer SCAI) as part of the Data Analytics task 4.3. 

The problem can be solved in three main steps. First, interpolation is performed, then the 

interpolated data is extracted from ParaView, and thereafter used as input data in the PCA 

analysis. By means of an appropriately compiled ParaView, the procedure described above can 

be performed completely using Python (paraview.simple.Resample.WithDataset, 

paraview.simple.ProgrammableFilter and sklearn.decomposition.PCA for interpolation, 

extraction, and machine learning analysis, respectively). 

Now, the parallel in-situ execution of this procedure is usually performed by using the Single-

Program, Multiple-Data (SPMD) programming model in which the same processors execute 

numerical simulation and visualization in a staggered way. This means that they are executed 

one after the other. Another option is to execute a MPMD programming model, where different 

processors are given to simulation and visualization. In this case, simulation and visualization 

are independent, but extra communication between sets of processors is necessary. While the 

MPMD model is widely used in numerical simulations of multi-physics problems, its effect on 

in-situ visualization problems has been studied in Task 4.2 (see Figure 18). In the problem that 

is being tested here, the usage of an MPMD execution could encourage the performance and 

load balance of the entire parallel execution (numerical simulations and in-situ). Additionally, 

compilation of the codes can be simplified, since codes are independent of each other. This 

means that the turbulent flow problem could be simulated using any parallel code (with or 

without in-situ instrumentation), while the analysis could be performed by means of either C++ 

or Python, and even using either serial or parallel codes. 
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Figure 18: Parallel programming models. (a) Single-Program, Multiple-Data (SPMD) or in-line 

visualization. (b) Multiple-Program, Multiple-Data (MPMD) or in-transit visualization [23]. 

As mentioned above, another interesting point is related to the load balance. Figure 19 shows 

the number of cells and dimensions of the given meshes. By using a standard domain 

decomposition method for the distribution of the parallel work in the turbulent flow problem, it 

is relatively easy to conclude that during the execution of the in-situ stage most of the processors 

could be idle while an SPMD execution model is used. 

 

Figure 19: Source mesh (blue and grey) of 4.67e6 cells and volume of 4.43x4.09x0.22 𝒄𝒎𝟑. Destination mesh 

(red) of 1.25e5 cells and volume of 0.05x0.05x0.05 𝒄𝒎𝟑. 

In order to overcome this drawback, an example using the MPMD model has been prepared 

(see Figure 20). The setup consists of two different codes, one for the destination mesh and 

another for the source mesh. The first one reads the destination mesh and sends its points to the 

source-code. The second code reads the source mesh and performs interpolations with data 

received from the destination code. Initially, both codes are executed at the same time, and once 

meshes are read, the destination code sends its points towards the source code. This one 

performs the interpolations and sends back the results to the destination code. In the future, 
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destination code will use the received data to perform the corresponding machine learning 

analysis. 

 

Figure 20: MPMD execution model of source code and destination code through n1 + n2 processors p. 

3.3 Summary of Visualization Activities 

The main focus of Task 4.2 has been to develop post-processing tools and workflows for 

exascale engineering simulations. Next to consulting in visualization topics and training 

offerings (see D5.7 Final Services, Training and Portal Report), the main effort of the 

visualization task is the development of scalable in-situ post-processing tools. Among the main 

challenges, we can mention interactive in-situ visualization in virtual environments and 

performant in-situ analysis of large-scale simulations.  

With the presented in-situ approaches, it is possible to easily couple Vistle with a wide variety 

of simulations without the need to implement a special in-situ interface. The drawback is that 

the transformation of data has to be done twice, once from the simulation’s representation to 

LibSim/SENSEI format and then to Vistle’s format. Because Vistle’s data objects are designed 

to control the lifetime of their data, even in the case where no transformation would be needed, 

the data must be copied into Vistle’s object representations (in multi-process mode to SHM, 

but also in single process mode). On the one hand, this can cause a huge memory overhead, but 

on the other hand it allows to interact with the data independently of the simulation. 

The core-code Nek5000 has been successfully run in-situ with Vistle by using its existing 

LibSim interface or the implemented SENSEI interface with support for AMR. Due to the 

described issues with the production case, no measurements of the overhead could be made. 

Similarly, PAAKAT has shown encouraging results for in-situ analysis of large-scale 

simulations. The simple and flexible API made integration into both Nek5000 and Alya 

straightforward, demonstrating the potential of PAAKAT as a general in-situ toolkit. 
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4 Task 4.3: Data analytics 

4.1 In-Situ Data Analytics 

4.1.1 Software Architecture  

Fraunhofer has developed a software framework for the purpose of in-situ analysis of CFD 

(computational fluid dynamics) data. Some key requirements have been identified which have 

been considered during the implementation: 

 Online and offline application of the toolbox 

 Simple integration with existing ML and UQ libraries 

 Efficient back-end based on (parallel) linear algebra libraries 

 Connection to standard in-situ interfaces and data readers 

 Interactive user-interface based on a client/server setup 

The overall concept of the selected architecture is shown in Figure 21. For the purpose of a fast 

and flexible development and validation of algorithms, most existing Machine Learning 

libraries provide a Python API and allow an interactive usage through ipython or jupyter servers 

[24]. In order to take advantage of existing libraries, this was also a fundamental design strategy 

for our software toolbox. The core API follows the definition by scikit-learn [25] and thus 

enhances a simple integration of our code with external methods into a single processing 

pipeline.  

 

Figure 21: Software architecture for in-situ data analysis [26]. 

Besides flexibility, efficient implementations of the algorithms are a major requirement in the 

context of large-scale data analytics. Therefore, we kept the Python layer as thin as possible 

and built on existing math libraries, e.g. OpenBLAS or MKL, for heavy computations. To 

further increase efficiency, a high-level parallelization is set up via mpi4py [27]. For low level 

parallelizations that rely on more intense communications, efforts have been put into the 

implementation of a Python wrapper for the Elemental parallel linear algebra library [28] for 

selected algorithms.  
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For in-situ data analysis, some of the methods have been wrapped as VTK [18] filters. In this 

way, they can be executed online in a Catalyst [17] pipeline or offline as ParaView [19] plugins. 

The latter also enables the import into a Python environment that provides interactive access to 

all VTK functionalities and integration with other analytics libraries in a client/server setup. 

4.1.2 Applications  

In a collaboration between KTH and Fraunhofer, in-situ algorithms for the estimation of the 

uncertainty due to finite time sampling have been implemented. This includes also a novel 

approach based on the modelling of the autocorrelation function during runtime. The approach 

has been applied to the entire three-dimensional velocity field of the flow around an airfoil, of 

which a slice is shown in Figure 22. A strong reduction of data I/O could be achieved while 

maintaining a similar accuracy compared to state-of-the art offline approaches based on 

autoregressive models. Results are constantly updated throughout the simulation. Therefore, 

the confidence interval for a given quantity of interest can be used as a stop criterion for the 

simulation once a predefined threshold has been reached.  

In addition, performance and scaling tests of the entire in-situ workflow have been performed. 

The strong scaling results are shown in Figure 23. For a low number of MPI ranks and therefore 

large local matrices, we observe only a small increase in the overall computing time of less than 

5% compared to the overall simulation. This demonstrates the efficiency of our updating 

algorithm and framework in general, and its suitability as part of a practical simulation 

workflow. If the local mesh sizes get too small, a reduced performance and high memory usage 

can be observed due to the VTK and Python overhead in our prototyping framework. In this 

case, an implementation of the algorithm in pure C or Fortran could promise a further speedup. 

Considering the main focus of the framework being to support the flexible implementation and 

evaluation of new algorithms in Python, the performance results are more than satisfying.  

Figure 22: Flow around the NACA4412 computed with NEK5000; a) Iso surfaces of the Q-criterion of the 

instantaneous flow field b) Sample Mean Estimation (SME) at the midplane. 
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Figure 23: Strong scaling behaviour of the a) computing time and b) memory consumption for different 

numbers of cores. 

    

In a second example, we computed the Principal Component Analysis (PCA) of the velocity 

field during the simulation based on a batch approach. By applying this method, several 

snapshots of the flow field are cached into memory and processed together to update the PCA 

regularly. Besides a reduction of the data in- and output during and after the simulation, a further 

benefit of this approach lies in earlier availability of the results. This can be exploited to 

generate a low-dimensional representation of the flow field during run time with the goal of 

monitoring the progress of the solution. In contrast to pure scalar quantities, such as local flow 

variables or numerical residuals, a more global view on the data is possible that can also capture 

new phenomena in a flexible way. By comparing the current simulation to previous runs, we 

are able to detect outliers that show unphysical or unwanted behaviour, such as unfulfilled 

constraints or errors in the numerical setup. Furthermore, a Machine Learning based clustering 

of the simulations can help to identify similar simulation results as an input for further analyses, 

such as sensitivity analysis or optimization. That way, we can save computing time by avoiding 

unnecessary runs as well as increase the accuracy of results by accounting for strongly non-

linear effects related to a change in the input parameters. Results of the simulation monitoring 

and clustering will be presented at the ECCOMAS 2022 conference including a full paper 

submission to the conference proceedings [29]. 

4.2 Uncertainty Quantification 

The development of UQit, a Python package for uncertainty quantification (UQ) in CFD  has 

reached a good level. The first version of this open-source package has been recently released 

along with a journal paper published at JOSS (Journal of Open-Source Software) [26]. UQit is 

designed to be non-intrusively linked to any CFD solver, conditioned on having the appropriate 

interface. From the programming point of view, the design is flexible so that UQit can be 

efficiently extended in future. An extensive documentation of UQit 3has been prepared which 

covers a short theory and detailed implementation of each UQ technique, and also provides 

several examples and notebooks. From this aspect, UQit can be used for pedagogical purposes 

as well. In the first release, several features are included, which are shortly reviewed below, 

and a clear plan for continuous development of UQit is in place. 

The UQ forward problem is performed through standard and probabilistic polynomial chaos 

expansion (PCE). The probabilistic version is a novel feature that is provided in UQit. The 

                                                 

3 https://kth-nek5000.github.io/UQit/ 
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construction of PCE is flexible in terms of the types of samples, truncation scheme, dimension 

of the parameters, and the method for estimating the unknown coefficients. Regarding the latter, 

the possibility of using the compressed sensing method has been provided. Global sensitivity 

analysis is performed through computing main, interactive, and total Sobol indices. There is no 

limitation regarding the number of samples and how the parameters are (randomly) distributed. 

Samplingfor both training and test can be carried out using several stochastic and spectral 

methods. For construction of the surrogates which are required for efficiently studying different 

types of UQ problems, options such as Lagrange interpolation, PCE, and more importantly, 

Gaussian process regression (GPR) are considered. In order to handle the typical problems 

arising in CFD, we have considered GPR with both observation-dependent (heteroscedastic) 

and -independent (homoscedastic) noise structure. 

The theoretical development of UQit and its application to assess UQ-based metrics for 

accuracy, sensitivity and robustness in CFD are described in our recent publication [30]. A 

novel aspect of the framework is to provide the techniques required for combining uncertainties 

from variation of inputs and parameters with observational uncertainties, see Figure 24. This 

is, in fact, consistent with the characteristics of high-fidelity turbulent flow simulations. The 

developed framework is used to evaluate performance of two popular open-source CFD 

software (Nek5000 and OpenFOAM) for simulation of canonical wall turbulence. In particular, 

impact of numerical parameters which include grid resolution in wall-parallel directions (for 

both solvers) as well as high-pass filtering parameters (for Nek5000) are thoroughly 

investigated in [31].  

 

Figure 24: The workflow of the UQ analyses taken from [29]: A set of Category-I factors q ∈ Q with known 

distributions is given. Associated with each of the n samples taken for q, a CFD simulation is performed where 

the resulting QoIs (responses) of each simulation can be uncertain due to Category-II parameters. A practical 

example of the latter can be the uncertainty in the QoIs due to finite time averaging. 
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Figure 25: Distribution of the pressure coefficient over the ellipse boundary. The diameter of the ellipse is 

assumed to be uncertain. Using a set of training simulations, the pressure coefficient for an unseen geometry 

is predicted and compared to the true simulated data. 

A new feature of UQit is a set of tools for estimating uncertainty in time-averaged quantities of 

turbulence simulations. The reliable estimation of such uncertainties is crucial considering the 

limitation in computational resources especially for wall-bounded turbulent flows at moderate 

to high Reynolds numbers that are relevant to engineering applications. The uncertainty 

estimators are diverse and include batch-based methods as well as methods which work based 

on modelling the autocorrelation function of time series. We have recently developed a novel 

methodology to estimate time-averaging uncertainty in high-order and non-linear turbulence 

statistics. The method has been validated and applied to direct numerical simulations of wall-

bounded turbulent flows. As a key feature, the proposed method accurately accounts for all 

relevant autocorrelation and cross-covariances between the turbulence signals and associated 

sample-mean estimators. As another main achievement, through a collaboration between KTH 

and Fraunhofer SCAI, we have successfully developed a framework for in-situ estimation of 

uncertainties due to time-averaging [32]. The uncertainty estimator is based on modelling the 

autocorrelation function of time samples, where a novel low-storage updating approach for such 

models is introduced.  Flow solver and UQit are linked through a VTK-based interface. The 

framework is flexible and independent of the flow solver, and also shows an excellent scaling 

while adding very small computational overhead. For large-scale simulations of turbulence, this 

technology will provide a reliable tool for online monitoring of the convergence of turbulence 

statistics.   

In another collaboration between KTH and Fraunhofer SCAI, we have successfully linked 

(offline) UQit to the simulations of Nek5000. For the flow over an ellipse, the simulation data 

were extracted by Paraview. The quantities of interest (QoIs) can, for instance, be pressure and 

friction coefficients over the boundary of the ellipse, or velocity/pressure signals at any point 

inside the domain. A computer experiment was designed in which the diameter of the ellipse 

was assumed to be uncertain conditioned on keeping the area of the ellipse fixed for all 

realizations. Using UQit, we could show how to estimate the uncertainties in the flow QoIs due 

to the variation of the ellipse shape. In addition to this, we could make predictions for the QoIs 

and their uncertainties, for the geometries which were not actually simulated, see Figure 26. 

This has been done using the Gaussian process regression. For the same set of computer 

experiments, we estimated the propagated uncertainty and also made predictions for the POD 
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(proper orthogonal decomposition) modes computed in-situ from the flow over ellipses of 

different geometries.  

4.3 Calculation of Modal Decompositions 

Highly accurate, turbulence scale resolving simulations, i.e., large eddy simulations and direct 

numerical simulations, have become indispensable for scientific and industrial applications. 

Due to the multi-scale character of the flow field with locally mixed periodic and stochastic 

flow features, the identification of coherent flow phenomena leading to an excitation of, e.g., 

structural modes is not straightforward. A sophisticated approach to detect dynamic phenomena 

in the simulation data is a reduced-order analysis based on dynamic mode decomposition 

(DMD) or proper orthogonal decomposition (POD). 

After the modal decomposition tools have been optimized in the first half of EXCELLERAT 

to efficiently perform modal decompositions in parallel on large data volumes, in the second 

half, the tools have been utilized to investigate the hydrodynamic instability in a swirl-stabilized 

combustor of the Alya-C2U1 use case provided by BSC that is described in D2.2 Report on 

Reference Applications Outcomes. Based on the flexible modular reader interface of the 

decomposition tool, a new parallel reader has been implemented based on the BSC Alya MPIO 

IO library to efficiently read the simulation data in the native Alya format. 

The flow field of the investigated combustor exhibits a self-excited flow oscillation known as 

a precessing vortex core (PVC) at a dimensionless Strouhal Number Sr=0.55, which can lead 

to inefficient fuel consumption, high level of noise and eventually combustion hardware 

damage. To analyse the dynamics of the PVC, DMD is used to extract the large-scale coherent 

motion from the turbulent flow field characterized by a manifold of different spatial and 

temporal scales shown in Figure 26 (a). The instantaneous flow field of the turbulent flame is 

visualized by an iso-surface of the Q-criterion coloured by the magnitude of the velocity vector. 

The DMD analysis is performed on the three-dimensional velocity and pressure field using 

2000 snapshots. The resulting spectrum of the DMD analysis, showing the amplitude of each 

mode as a function of the dimensionless frequency is given in Figure 26 (b). One dominant 

mode is clearly visible, marked by a red dot at Sr=0.55 matching the dimensionless frequency 

of the PVC. An instant of the temporal reconstruction of the extracted DMD mode 

superimposed on the temporal averaged flow field showing the extracted PVC vortex is 

illustrated in Figure 26 (c). It shows the iso-surface of the Q-criterion coloured by the radial 

velocity component. 
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Figure 26: DMD analysis performed on the flow field of a turbulent flame. (a) Instantaneous flow field, (b) 

Spectrum of the DMD, (c) Reconstruction of the dominant DMD-mode. 

Since the modal decomposition toolkit developed in EXCELLERAT addresses a broad user 

community having various backgrounds and expertise in HPC applications, a user-friendly 

implementation allowing an efficient workflow is mandatory. To achieve this requirement, an 

implementation with a client/server architecture has been realized, which is explained in Figure 

27. With this implementation, the actual parallelized modal decomposition is performed on the 

server, i.e., the HPC cluster, which is connected via TCP with the client, i.e., the graphical user 

interface (running on the local desktop computer. To efficiently visualize the extracted modes 

and reconstructed flow fields without writing large amounts of data to disk, the modal 

decomposition server can be connected to a ParaView client/server configuration via Catalyst 

enabling in-situ visualization. In addition to the in-situ visualization using Catalyst, an 

additional interface using SENSEI was implemented in the last year of EXCELLERAT. This 

was done to enable a connection to the visualization software Vistle developed in Task 4.1, 

which utilizes the SENSEI interface (see Section 3.1.2). With this implementation, the modal 

decomposition toolkit is also able to perform in-situ visualization with the Vistle software. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Client/Server structure of the EXCELLERAT modal decomposition toolkit. 

(a) (b) (c) 
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To enable an efficient and interactive workflow with the modal decomposition toolkit 

implemented in a user-friendly client-server architecture, it is essential that the runtime of the 

decomposition is sufficiently small. For time-resolved large-scale simulations, the snapshot 

matrix which has to be decomposed reaches a size of up to O(109) times O(103) matrix entries. 

Such simulations typically run on pre-Exascale HPC systems. The computationally most 

expensive part of the modal decomposition is a singular value decomposition (SVD) of this 

very large, tall (“skinny”) snapshot matrix. To reduce the overall computational time of the 

decomposition, consequently increasing the usability of the toolkit, various SVD algorithms 

have been implemented and tested in the last year of EXCELLERAT. Initially, the 

decomposition toolkit used the parallel SVD routine (pdgesvd) implemented in the 

ScaLAPACK library. Since the library is based on a two-dimensional block-cyclic distribution, 

this routine uses intensive communication between ranks and therefore does not perform or 

scale well for skinny matrices which typically occur in HPC CFD applications. To circumvent 

this problem and achieve a good parallel performance for exascale applications, two alternative 

algorithms were implemented in the toolkit: SVD using the tall/skinny QR decomposition 

TSQR decomposition, and SVD using an eigenvalue decomposition (EVD) of the cross-product 

matrix. Here is the main idea of both:. 

 

 

 

 

 

 

   

 

Using the alternative algorithms, the communication was substantially reduced leading to a 

significant reduction of the computational time as shown in Figure 28. After introducing the 

alternative SVD algorithms into the decomposition framework, the toolkit is now ready to 

process the results of large, exascale computations. 

 

SVD using TSQR decomposition: 

𝐴 = 𝑄𝑅  
    = 𝑄 (𝑈𝑅Σ𝑅𝑉𝑅

𝑇) 
    = (𝑄 𝑈𝑅)Σ𝑅𝑉𝑅

𝑇 
𝐴 =      𝑈     Σ  VT   

 

SVD using EVD of the cross-product 

matrix (𝑨𝑻𝑨 = 𝑽𝚲𝑽𝑻): 

𝐴𝑇𝐴 =   (𝑉Σ𝑈𝑇)(𝑈Σ𝑉𝑇) = 𝑉Σ2𝑉𝑇  

 eigenvalues Λ = singular values Σ2 

 eigenvectors 𝑉= right singular vectors 𝑉 

Left singular vectors 𝑈 = 𝐴𝑉Σ−1 
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Figure 28: SVD using ScaLAPACK, the TSQR decomposition (QR) and the EVD of the cross-product 

matrix (CP) 

 

4.4 Post-Processing TPLS Simulations 

During the second year of EXCELLERAT, UEDIN undertook an investigation into the viability 

of introducing in-situ data analysis in the TPLS simulation code. 

TPLS simulates two-phase turbulent flow and the version handed over to UEDIN to prepare for 

exascale outputs two forms of data files: Snapshot and Restart files. Both files were in ASCII 

and were written serially by the master processor.  The author of the code assumed that the 

entire dataset could fit inside the memory of a single MPI process. Clearly, to run efficiently on 

exascale machines, much larger simulations are required which will be too large for a single 

MPI I/O process. To overcome this, it was agreed that UEDIN would ensure efficient I/O 

performance in the future, by transforming the I/O from ASCII to a binary format and 

parallelising the I/O routines.  This work was performed under Task 4.4 Data Management and 

is described  in Section 5.6. The Snapshot files contained the 5 or 6 parameters for each of the 

points in the 3D mesh, where the number of parameters was hard-wired into the source code, 

thus end users may have to recompile and rerun simulations. The Restart files were larger in 

size, as they contained the same information as the snapshot files, but also further information 

was required to enable the simulation to restart from a previous simulation. Because the number 

of parameters is hard-wired into the source code, the end user needs to recompile and rerun the 

simulation each time the post-processing data analysis was found to require more data. This too 

has been addressed under Task 4.4 and is described in Section 5.6. 

The data analysis carried out by the TPLS owners involves post-processing the snapshot files 

using Matlab, wherein some basic calculations are performed before a plot is created for each 

snapshot file.  These plots were saved to file and displayed on the screen thereby creating an 

animation viewed by the end user. 

HAWK: 

2 x AMD EPYC 7742 per node 

• 64 cores @ 2.25 GHz per CPU 

• 256 GB DRAM per node 
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Figure 29: Two images created by the two Matlab post-processing routines. 

UEDIN approached the TPLS owners with the idea that post-processing data analysis could be 

done inside the code in-situ, where one core per node would be removed from the pool of cores 

employed for the simulation. This collection of cores, one per node, would then be employed 

to perform the basic calculations of post-processing using Fortran90 and MPI, the language and 

communications library of TPLS, and the graphics files would be written directly using 

Fortran90. This would involve changing the format of the graphic files from the Matlab .fig 

format to .png or more likely .ppm. Moreover, the Matlab routines would not only need to be 

rewritten in Fortran90 (or C) but also parallelised to compute on the distributed data. This data 

would be gathered from the running simulation using an interface such as Catalyst from 

ParaView, and libSim from VisIt, depending on their suitability. 

The Matlab routines and example data files were received and, after some effort, the post-

processing environment was recreated on a laptop locally at UEDIN. The port was not exact as, 

despite the images appearing correct to the eye, the resultant binary .fig files differed. Despite 

both runs performed on Windows 64-bit OS, they were produced using different versions of 

Matlab (UEDIN used R2020a in 2020, whilst the results employed for comparison were 

generated almost 5 years ago).   

During the investigation to convert the Matlab .m files to Fotran90, and then parallelise them 

with MPI, it became quite clear that the amount of calculation was simply too small to warrant 

parallelising the calculation. Such work would result in a highly inefficient use of the resources 

due to extremely poor load-balance: The snapshots graphic files are created once every 500 

timesteps, thus the in-situ data analysis cores are mostly waiting to be invoked; when invoked, 

each core would then compute almost nothing, then these cores would spend the majority of 

their active time writing the graphic files using a parallel I/O harness. Given that 

communication networks are typically a shared resource, this traffic would occupy the same 

network employed by the TPLS simulation itself and thus slow down the ongoing simulation. 

As described in Section 5.6. the TPLS I/O routines now employ PETSc I/O routines, writing 

binary HDF5 files, and the resultant snapshot files are much smaller and created much faster. 
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The snapshot files now hold all parameters that the end user may wish to post-process, removing 

the need to recompile and rerun simulations. 

Given the improved I/O and the projected inefficiencies of running the post-processing in-situ, 

the owners of TPLS agreed that the best use of the remaining UEDIN T4.3 effort would be to 

convert their post-processing Matlab routines to read HDF5 rather than the ASCII files, thereby 

alleviating disk space required to store the snapshot files, and to allow users to decide what is 

plotted after the simulation and not during compilation. 

It has been found that the given example ASCII files employ an out-of-date data structure, thus 

the Matlab scripts require alteration before work can start to switch to HDF5.  Moreover, a new 

numerical method has been introduced to TPLS, where simulations may now employ either the 

existing Level Set Method or a new Diffuse Interface Method, where this new method employs 

a different parameter range. As such, new Matlab scripts are to be developed to cater for all 

these possibilities. 

4.5 Summary of Data Analytics Activities 

The main focus of the work in Task 4.3 has been put on the theoretical development and 

enhancement of dedicated software tools for data analytics of CFD simulations, namely in the 

following areas: 

 In-Situ data analysis and simulation monitoring 

 Uncertainty Quantification  

 Modal decompositions of transient flow data  

 Enhancements on TLPS post-processing capabilities  

An in-situ software toolbox was developed by Fraunhofer as a basis for several data analysis 

algorithms that are executed during the simulation for different purposes, such as simulation 

monitoring, sampling mean error estimations or building data-driven surrogates of the flow. 

Gained knowledge during the process and documentation material will be exploited in training 

activities (see D5.7) as well as consulting services related to “Data Analytics for Engineering 

using Machine Learning”. 

Theoretical development of various UQ techniques for CFD applications have been pursued by 

KTH and implemented in UQit, a dedicated Python package for UQ. Theoretical results and 

details on the implementation have been submitted as the journal papers [30] and [26]. In 

addition, the gained knowledge can be exploited in form of best practice guides. 

The software toolkit for modal decompositions developed by RWTH was further enhanced with 

a modular reader interface and applied to the Alya use-case C2U1 to investigate the 

hydrodynamic instability in a swirl-stabilized combustor. Additional documentation material 

and user guides for the execution of a DMD analysis are planned to be compiled.  

For TPLS, UEDIN investigated in-situ data analysis but found it to be an inefficient addition. 

Instead, the associated data analysis of TPLS has now been updated to reflect the improved data 

management which was, in turn, introduced to prepare for exascale platforms. 
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5 Task 4.4: Data management 

5.1 Introduction 

The Data Exchange & Workflow Portal in form of a software tool combines the topics data 

transfer, data management, data dispatching and data scheduling. Therefore, the platform 

merges the effort of Task 3.6 “Data dispatching through data transfer” and Task 4.4 “Data 

Management” which cannot be separated. 

A typical data round trip for an exascale simulation workflow is shown in Figure 30 - pointing 

out several challenges. The round trip describes the overall process which we are trying to adapt 

to with the help of a first proof of concepts. 

 

Figure 30: Data Roundtrip. 

The goal is to complete a data transfer round trip with one of the EXCELLERAT use cases 

which covers all aspects of an Engineering workflow - data simulation, data transfer, data 

analysis, data post processing and the transfer back to the customer. In many cases only the 

code itself is optimized, but it is important to consider that there is a specific lifecycle around 

it that is particularly important for the end user. 

5.2 Challenges regarding exascale 

Companies face various problems while dealing with HPC computations, HPC in general or 

even access to HPC resources. Small companies in particular cannot meet certain requirements 

because their existing internet connection has not a sufficient bandwidth or Quality-of-Service 

for the necessary HPC connection setup.  

When needing high-fidelity simulations, results usually contain large amounts of data. As 

transfer bandwidth and storage are restricted, careful consideration must be given to what data 

is sent back to the client. Altogether, data transfer must be efficient and secure. 

We address these challenges in several tasks of EXCELLERAT. This is described in detail in 

the following section. 
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5.3 Solution 

Through the Data Exchange & Workflow Portal, which is developed within the Tasks 3.6 and  

4.4 by SSC, the challenges described in the previous section can be addressed. The platform is 

not only used for data processing, but will also enable a safe and traceable, bidirectional, online 

data transfer between the data generators and high-performance computing centres represented 

in the EXELLERAT project. This data transfer will be highly automated to avoid duplication 

of the transferred content. This approach will lead to a data reduction, which can ultimately 

save time and costs. The Data Exchange & Workflow Portal provides all relevant HPC 

processes for the end users, such as uploading input decks, scheduling workflows, or running 

HPC jobs.  

The added value of the Workflow Portal in relation to exascale data are the topics such as data 

reduction, volume reduction and data compression of input and output data. In concrete terms, 

this means that the data is getting small and manageable for the data transport.  

In Task 3.6 and Task 4.3, Fraunhofer and RWTH developed data analysis and reduction 

techniques, that extract as much relevant information as possible from the high-dimensional 

simulation data into a compact representation, such as physical or data-driven features. The 

algorithms are executed on the same architecture as the main simulation. Besides providing 

better physical insights, this reduces the amount of data that needs to be transferred back to the 

user.  

Future efforts will be needed on data management activities to organize simulation runs which 

is, however, beyond the scope of EXCELLERAT. Keeping detailed track of simulations that 

have already been executed including all in- and output data could simplify the analysis process 

and prevent redundant calculations, thus saving computing efforts. A smart simulation 

management can also include an on-demand selection of computing resources based on 

hardware requirements and resource availability. 

In the following section the progress of the platform so far is shown and explained graphically. 

5.4 Introduction of the platform interface 

After a successful login, the user starts on a dashboard page. To be able to use the corresponding 

HPC resources, a connection to the cluster, on which the calculation is to be performed, is 

required. Currently, HLRS is available with HPE Apollo (Hawk) and the NEC cluster (Vulcan). 

To connect the platform with the machine user, the SSH access data of the corresponding cluster 

must be entered once. 
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Figure 31: Connection to an HPC cluster. 

The basic structure of the platform consists of projects corresponding to the workspaces on the 

clusters. This means, that when creating a project, a workspace with the same name is created 

on the cluster. When a new project is initially created, a name must be assigned. In addition, 

you must specify how long the retention period should be (1-30 days with a possible extension 

of three times, which corresponds to a total of 120 days). A description is optional. 

 

Figure 32: Project creation. 

The project contains a dashboard, an input deck, workflows, and project settings. The dashboard 

shows the last executed workflows and the latest notifications. To prepare the simulation, data 

is created locally and can be uploaded to the corresponding cluster through the input deck menu. 

After the appropriate files have been selected, the user is asked on which machine these files 

should be uploaded. The background is that in the future, further HPC centres with several 

machines can be connected to the platform and the goal is, that the platform will decide, where 

which code is best stored for calculation. The progress of uploading the local files is displayed 

to the user in the interface. During the upload, the system checks whether there are already 

identical file pieces that are already in use and do not need to be uploaded again.  



 Public 

Copyright © 2022 Members of the EXCELLERAT Consortium 

 

Project 823691 EXCELLERAT Deliverable D4.7 Page 46 of 63 

 

 

 

Figure 33: Uploading an input deck. 

All uploaded files end up in the editor's workspace. For the platform, a specific folder structure 

is created on the HPC cluster so that all files can be found again. However, all modifications 

that take place outside the platform are not monitored, since no direct accesses are integrated 

into the cluster. The following folder structure is used: The “input deck” contains all input data 

that have been uploaded while “runs” contain all executions with the result data. 

 

Figure 34: Workspace structure on an HPC filesystem. 

So far you can specify an “excellerat.yaml” file for each project. This control file describes the 

workflows and how the simulation should look like and what should be done with it in the 

workspace. In there, you can also specify scripts  that may run in pre- and post-processing. 

These could be included in the YAML file as batch scripts or uploaded at the beginning and 

called in YAML. 
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Figure 35: Example of an excellerat.yaml file 

After creating a new workflow, the uploaded excellerat.yaml file is automatically loaded into 

this workflow. In the background, the file is loaded from the cluster workspace to be displayed 

in the browser. Additionally, the workflow can be changed manually. There is a validation of 

the commands and an auto-completion. Around the control file, the input data is added to run 

the simulation. The corresponding workflow can be scheduled and started after pressing 

“Schedule”. The platform component in the corresponding cluster executes the command for 

and prepares the run script (“run.sh”) from the input files and passes it to the simulation. 

 

Figure 36: Workflow scheduling. 

After the run has been successfully scheduled, each step is processed in the background, 

executed automatically and the user receives a browser pop-up notification at the end notifying 

that the run has been successfully completed. In this example, a few files and a folder structure 

were created in the workspace, which the user can now download. 
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Figure 37: Workflow overview. 

5.5 TPLS I/O for exascale platform 

In the framework of the same tasks, UEDIN developed TPLS I/O for exascale platforms. They 

have investigated efficient strategies for pre- and post-processing as well as I/O, storage, 

accessibility, and efficient metadata management for TPLS. This is following closely the 

definition of Task 4.4 and particularly includes parallel I/O strategies, e.g. MPI-IO and parallel 

file formats, like HDF5 and NetCDF, the development of data reduction strategies and, to a 

lesser extent, the exploitation of novel memory and I/O hierarchies. 

TPLS I/O has now been modernized and is ready for exascale usage. This was done by replacing 

serial I/O with parallel I/O routines, and by fully enabling its restart functionality. Three data 

reduction strategies have been introduced. First, ASCII data formats were replaced with binary 

HDF5 files. Second the end user is enabled to specify which data to read/write instead of 

reading/writing unwanted data. Finally, cell coordinates have been removed from data files, as 

they can be reconstructed by the location of data values within the HDF5 array along with mesh 

structure metadata contained in associated, small human-readable XDMF metadata files. Note 

that at the beginning HDF5 files were created using NetCDF; however, it was found that, since 

TPLS predominately employs PETSc, the PETSc HDF5 I/O routines proved to be far more 

efficient in terms of memory usage, usability, source code maintenance, and overall 

performance. Efficient metadata management was introduced via the aforementioned XDMF 

files, where each small human-readable file describes its associated HDF5 binary file. Novel 

memory and I/O hierarchies will be supported by the PETSc I/O library, as PETSc releases new 

versions for new hardware. 

5.6 Development Progress 

Since the last reporting period, there has been a major step forward in the back-end development 

of the platform's intelligent data handling. The goal is the data reduction of the users input data 

to make the data small and manageable for data transport. This data reduction part now takes 

place in the background of the platform and has been implemented. When uploading, a hash 

tree is first calculated from the whole file. This means that the file consists of many individual 

megabyte blocks, each of which has a unique hash. This hash tree can be used to determine 

which parts have been uploaded before. In the future, only changes have to be uploaded again. 

The next step of the reduction is to determine the media types of a file to see how much they 
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can be compressed before they are uploaded. The final step, which is not yet fully implemented, 

is to compress the files on the way back.   

Furthermore, many minor features have been added since the last reporting period. It is now 

possible to connect more than one HPC machine to the platform. Users can connect directly to 

the HPE Apollo (Hawk) and the NEC cluster (Vulcan) of  HLRS with their user information 

via the platform. In addition, the user is shown how many jobs are currently running on the 

respective system. 

Additionally, the last executed workflows are now displayed to the user on the Project 

Dashboard Overview. Here, the user can see at any time which state the executed job is in. 

Parallel to the further development of the platform, SSC is currently in the process of testing 

the platform and its feasibility with selected pilot partners (e.g. Hydrograv and Festo) and 

incorporating their user feedback into the platform. The knowledge gained from this can be 

incorporated into the development of the platform. 

5.7 Summary of Data Management Activities 

The main focus of the work in Task 4.4 Data Management and Task 3.6 Data Transfer has 

been to put on the development of the Data Exchange & Workflow Portal platform and to 

complete the data roundtrip for exascale engineering simulations. The most important outcomes 

are listed below: 

 Providing access to the most relevant HPC processes to the users (upload Input Deck, 

run simulation, download results) 

 Secure, traceable, automated transfer between data generators and HPC centres 

 Various changes in the platform's user interface to improve usability 

 Within the WP-transversal Data Transfer and Data Management Working Group Task 

3.6 and 4.4, we could contribute to the EXCELLERAT service portfolio. For example, 

the platform was presented in the service platform, developed in WP5. 

 Time and cost savings due to a high degree of automation that streamlines the process 

chain 

 The platform can be further optimized and opened up for more HPC centres, gaining 

one tool to address all centres 

Knowledge gained during the development of the data workflow will be exploited in best 

practices guidelines, training activities as well as consultancy services for support and 

management of the large amount of data produced and used in engineering applications. 

Beside the further development of the software, a piloting study was conducted to evaluate the 

usability of the tool for medium sized-enterprises. The access to and usage of HPC for industrial 

partners was a key requirement and goal for the developed platform. In collaboration with ten 

industrial partners (e.g. Hydrograv, Festo, Eberspächer, Elringklinger, Syntegon) the platform 

was tested with real data and the use cases of the partners were examined to see if the tool can 

meet their needs.  

In general, most of the users were very satisfied with the solution. Especially the dashboard 

with the traceability of jobs that have been executed in a user-friendly interface were pointed 

out as an improvement to the currently existing command-line-only solutions. Some of the 

partners used the platform on a regular basis during the whole piloting phase. 
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The feedback regarding additional features and improvements was analysed and the most 

important issues were scheduled for the further development. Those include: 

 Reusable templates for workflows 

Many times, users will have multiple calculations with just slightly changed 

input data to simulate the impact of changes. Therefore, the possibility to create 

a reusable workflow will save time and make it easier to secure a reliable 

constant test environment.  

The implementation will include saving a defined workflow as a template for 

future workflow executions. Additionally, templates can be used by multiple 

users (e.g. colleagues of the same company or team). 

 Two-Factor-Authentication 

To further strengthen security, a two-factor authentication will be setup. Possible 

technical solutions will be evaluated and implemented. 

 Loading of environment variables 

o Environment variables play an important role in simulations. Besides changing 

input data, this is the most common use case to understand the effect of a 

changed environment. Supporting the use of variables will increase the usability 

and add to the benefit for users.  

In addition to the mentioned new features, next steps include a local installation of the platform 

within the HLRS infrastructure as an on-premise solution and the rollout for production use 

with a licensing model for commercial use. 
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6 Task 4.5: Usability 
The general goal of the usability task is to provide workflows and best practices for an 

engineering simulation's entire life cycle, from pre-processing, including modelling and 

meshing, and execution of simulations to post-processing. In order to derive efficient 

workflows, this task gathers the expertise and methods developed within EXCELLERAT 

necessary to run large-scale engineering simulations. 

Throughout the duration of the project, the usability task has taken an observatory role, 

monitoring the developments in the core codes and gathering experiences from use-case owners 

after their runs, from prototype runs to final demonstration runs. A common theme among 

several core codes is the efficient use of emerging technologies and accelerators, particularly 

towards the end of the project. Until recently, most, if not all, accelerator-related efforts within 

EXCELLERAT have focused on NVIDIA technology. Using OpenACC or CUDA, core codes 

have gained significant experience in how to exploit these technologies. 

However, in light of the announced EuroHPC pre-exascale systems [33] and announced DoE 

exascale systems [34], support and knowledge about OpenMP 5 (offloading) or HIP [35] might 

be equally important for developers of engineering simulation codes. Unfortunately, due to 

delayed installation of these EuroHPC systems, and a worldwide supply shortage of AMD 

accelerator technology, the centre could not gain significant experience with these technologies 

during the project's lifetime.  

Gathered experiences from executing the use-cases and the efficient use of accelerators have 

been reported in a separate centre-wide (WP2, WP3, WP4) best practice guide for exascale 

engineering simulations. This combined guide also contains gathered data and post-processing 

experiences from the more data-intensive runs in the final phase of the project.  
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7 Conclusion 
To conclude, the development of enhanced services to support exascale engineering simulation 

workflows has progressed as planned within work package 4. The main achievement during the 

project has been to formulate and validate prototypes of the enhanced services outlined in 

deliverable D4.2. Co-design activities were established with a strong connection to the work 

performed in work package 3. Scalable in-situ visualization workflows for both interactive and 

non-interactive analysis have been developed and tested with several EXCELLERAT core-

codes. Similarly, in-situ data analytics and uncertainty quantification frameworks have been 

developed and validated with different codes and problems. HPC-specific data management 

techniques have been developed and tested with a complete data roundtrip from uploading an 

input deck to downloading post-processed results. These services have been designed and 

implemented based on use-cases’ needs, either using derived model problems or scaled-down 

formulations of the full use-cases. In the final phase of the project, developed services have 

advanced past the prototype stage and have been integrated and validated within the full use-

cases in EXCELLERAT. 
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9 Appendix 

9.1 Rough Guide to Preparing Software for Exascale 

This Appendix Section is to be used as a Crib Sheet for improving the efficiency of software 

and will be published as a best practice guideline on the EXCELLERAT service portal. 

The test has been adapted from Appendix A of the CoE CompBioMed deliverable [36]. 

The term exascale is used to describe HPC hardware capable of at least one exaFLOPS, or 1018 

FLoating point OPeration per Second. It is envisioned that such machines will have many multi-

core processors, and that the available memory per core will be far inferior to those on current 

HPC platforms. For instance, this was seen when attempting to port MPI codes to IBM Blue 

Gene machines, or the Intel Xeon Phi family, where the amount of memory per core is 

prohibitively small for many codes parallelised using MPI only. As such, the common practice 

of running one MPI task per physical core may no longer be possible for the majority of codes 

in the future. 

The solution for getting codes ready for exascale platforms requires both software and hardware 

related strategies. The former, the subject of this note, is described below. The latter, beyond 

the scope of this note, is achieved via Co-Design, where hardware vendors and end users work 

together to ensure future platforms are not built to achieve exascale performance at the expense 

of usability. 

Application codes rarely perform and scale well when first parallelised: each doubling of scale 

typically exposes a new issue. Ensuring the application will scale on HPC systems - both today 

and in on the exascale systems of the future - requires stepwise increasing of scale and 

validation of correctness, debugging, performance analysis and tuning. Then, repeat for each 

significant code extension/optimisation. Through performance analysis, programmers can 

locate so-called “hot spots”, i.e. code which takes the most time, as this code should then be 

targeted for improvement. 

9.1.1 Software preparations 

Given the memory per core will most likely be substantially reduced when compared to today’s 

HPC platforms, the practice of assigning one MPI task per physical core will have to be 

substituted by using every 2nd or 4th core for each MPI task. This is known as under-populating 

nodes. At first glance, this appears to suggest that we cannot fully exploit the hardware, as we 

simply avoid using 50% or even 75% of the cores; however, these spare cores can be employed 

via mix-mode codes, where each MPI task runs threaded routines/loops to run on the remaining 

cores. 

Essentially, authors must expose as many levels of parallelism as possible within their code. 

Coding this can involve ensemble runs to coupling multiscale codes, multiprocessing (with 

inter-process communication) to multithreading, vector processing to accelerator-specific 

commands. This process can slow the code down on present day platforms but will future-proof 

the code. 

For instance, there are sets of serial algorithms, so-called Optimal Serial Algorithms, which are 

often difficult or simply impossible to parallelise, as these algorithms employ data from the 

previous steps or even the current step to make improvements at the current step. Such 

dependencies can prevent concurrent execution of threads in the program, for instance. 
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The inelegant yet empowering solution is to replace the optimal serial algorithm with a sub-

optimal serial algorithm which is, however, parallelisable. Whilst the serial performance may 

be worse, the parallel performance will soon outperform the serial version as the number of 

cores increases. 

9.1.2 Improve serial code 

Before considering how the code is parallelised, the first step is to consider the serial sections 

of the code. 

 Remove excess memory use in serial code. 

 When using C++, find good balance of OOP and functional programming, as an 

intensive use of OOP might introduce an unnecessary layer of complexity of the 

scientific code. 

 Ensure proper use standard libraries 

9.1.3 Introduce vector processing 

 Use appropriate compiler options 

 Write ordered loops or leave this to compilers? 

 Innermost loop must have independent iterations 

 Loop length is either larger of multiple of vector length 

 It is possible to set this at compiler time but not "probe and populate" 

 No function calls, except maths libraries 

 functions can be vectorised using OpenMP “declare simd” feature 

 No complex control flow 

 Determinable trip count (i.e. no while) 

 the trip count must be known before entering the function at runtime 

 Data access should be vector aligned, i.e., start at vector boundaries, and preferably 

continuous 

 For more advice on vector processing: http://www.archer.ac.uk/training/course-

material/2017/11/sgl-node-ox/L04-vectorisation.pdf 

 Be aware of the ISA (Instruction-Set Architecture), such as SSE (Steaming SIMD 

Extensions, AVX (Advanced Vector Extensions), etc.  

 it determines the vector length 

 may target vectorised FMA instructions 

 Do loop padding manually to get rid of peel/remainder loops 

 Concerning vectorisation, we check compiler output or assembler code to see 

what was vectorised 

 Use inline hints for functions or routines to help out the compiler to inline 

 Remember that YOU know your application better than the compiler does. 

http://www.archer.ac.uk/training/course-material/2017/11/sgl-node-ox/L04-vectorisation.pdf
http://www.archer.ac.uk/training/course-material/2017/11/sgl-node-ox/L04-vectorisation.pdf
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 It all depends on how the data is aligned in RAM 

 Hints with pragmas might be useful, also 

 Force data alignment with compiler instructions (usually done automatically by the 

compiler) 

9.1.4 Improve MPI code 

 MPI messages should be grouped to avoid multiple smaller messages 

 e.g. use derived data types to avoid double buffering 

 Avoid any storage or computation of O(nranks) 

 Avoid all-to-all communication 

 e.g. if(rank==0)then do work over all other ranks 

 Remove unnecessary MPI_BARRIERs 

 Do not over schedule cores when using threaded maths libraries 

 typically control using OMP_NUM_THREADS even when libs do not use 

OpenMP 

 Use nonblocking collective communications. 

 overlap computation and communications where possible 

 Remove unnecessary communication synchronisation 

 use MPI_TEST rather than MPI_WAIT 

 avoid MPI_Probe 

 it most likely forces internal buffering to report the size of the pending 

message 

 Avoid ordered halo swapping, 

 e.g. do not delay y-direction sends until x-direction receives have 

completed. 

 however, huge network bursts are also not ideal 

 sometimes, ordered sends allow ordered receives. 

 and ordered sends might allow to take advantage of the network topology 

 e.g. one can completely load the network with x-direction halo swaps and so on 

 Ensure load is balanced 

 Avoided the receive-before-send scenario 

 one-sided communications can alleviate this 

 Be aware that not all MPI libraries are equal 

 e.g., there are many ways to implement collective communications. 
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 Respect the fact that the MPI standard prohibits concurrent read accesses on the same 

buffer (even though there is no race condition) 

 It may reduce the efficiency (or cause bugs) 

 Tag the source 

 Be aware: “blocking” has an alternative meaning in the MPI standard. 

 This can easily lead to serialisation of huge chunks of the program. 

 Interleave/overlap communication with computation where possible 

9.1.5 Improve MPI parallelism 

 Give each MPI task multiple sub-domains 

 a subdomain is a distinct region of the computational domain and a result of the 

domain decomposition algorithm. 

 this allows light weight parallelism on a socket, keeps cache logically together, 

etc. 

 Enable multiple tiles per task. 

 this might make tiles fit into cache but will spend time swapping boundary 

information with yourself 

 Use MPI Communicators, to map the communication to the target HPC topology 

 Collective operations are possible on a subset of processes. 

 Explicit communicators are very useful to leverage MPI Shared Memory 

 One-sided communication (or Remote Memory Access (RMA)), can be faster than the 

message passing model 

 May be beneficial when the load is hard to balance, since delays in the receiving 

process are not necessarily propagating to the sender 

9.1.6 Introduce OpenMP for threads on cores and OpenACC for GPUs  

A code which uses both MPI and OpenMP, or a code that uses both MPI and OpenACC, is 

referred to as a mixed-mode code. This is done for two reasons: reduce memory footprint or/and 

speed up application. 

Not all MPI codes benefit from becoming mixed-mode codes. The benefits are as follows. 

 Hybrid applications have a reduced memory footprint (the shared memory model allows 

threads to avoid halo regions or ghost cells) 

 Eases load balance issue (usually the complexity of (adaptive) load balance growths 

with the number of subdomains) 

 Load balancing in threads is much easier 

 thread-pool model, or 

 tasks 
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 For applications which are MPI-bound due to load imbalance (long barriers in 

MPI_Wait or MPI_Receive/Send), it might be advisable to reduce the number of 

processes and increase the threads, while using OpenMP’s built in load balancing 

features 

Whilst the drawbacks are as follows: 

 In case of MPI_THREAD_MULTIPLE, the application might lose portability 

 forked threads are allowed to call any MPI routines 

 Shared memory applications have their own problems 

 e.g. false sharing, where a cache line is voided repeatedly 

 this is naturally avoided by MPI processes 

 NUMA effects, e.g. where the data is placed in memory 

 this can be resolved by careful task mapping. 

Maybe also better to use OpenMP 4.5 target directives than OpenACC. 

9.1.7 Improve OpenMP parallelism 

An excellent Best Practice Guide for writing mixed-mode programs, i.e. MPI+OpenMP, can be 

found via the Intertwine project pages: https://www.intertwineproject.eu/mpi-plus-openmp-

threads-resource-pack 

 Investigate OpenMP tasks 

 Try different schedules and/or tasks 

 Avoid over-scheduling threads when calling threaded maths libraries. 

 Minimise sequential code 

 Replicating computation rarely works 

 Ensure load balance over threads. 

 Use different loop schedules or tasks 

 May includes balancing communication in one thread with calculations in the 

rest 

 Avoid MPI data types as packing data is done on one thread: better to pack data in 

parallel using threads, as MPI should not need to double pack when data is contiguous 

 Take care with NUMA effects my considering mapping, i.e. task placement 

 e.g. run at least one MPI process per NUMA node 

 Take care with process and thread binding: threads should run on the same socket as 

their parent MPI process. 

 Minimise the number of OpenMP barriers 

 Use OpenMP directives to force SIMD operations 

 OpenMP allows explicit vectorisation of functions called from vectorised loops 

https://www.intertwineproject.eu/mpi-plus-openmp-threads-resource-pack
https://www.intertwineproject.eu/mpi-plus-openmp-threads-resource-pack
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9.1.8 General programming tips 

 Be aware of the Load-Hit-Store problem (it does exist on multiple levels) 

 prevents caching by the compiler and causes pipeline stalls. 

 e.g., appears in MPI-IO (sometimes referred to as Read-Modify-Write effect) 

 IO can dominate 

 consider MPI-IO or, better still, HDF5 

9.1.9 Code Longevity 

Whilst this section includes good practice for software engineers in general, the following 

points are key when preparing for exascale systems, primarily because large popular codes 

outlive the programmers who, in turn, typically outlive the HPC platforms for which the 

software was written. 

 follow a strict coding style guide 

 use readable variables 

 use internal documentation 

 keep routines to less than one page 

 copyright statements for every module/subroutine/function 

 key for IP monitoring 
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9.2 Using Vistle’s in situ capabilities 

This Appendix Section provides a brief user guide on how to utilise Vistle's in situ capabilities 

developed within EXCELLERAT. 

9.2.1 For LibSim instrumented simulations 

The LibSim instrumentation on the simulation side is done by linking to a small static LibSim 

library and provide call-back functions for it to retrieve the data from the simulation. When the 

simulation starts, this static library creates a TCP socket on rank zero and dumps a file with the 

connection information. As soon as the simulation receives a valid connection request, it links 

dynamically to a library called libsimV2runtime_suffix.ending with suffix “par” if build with 

MPI and else “ser” and with ending “so” on Unix and “dll” on Windows systems. Vistle 

therefore creates such libraries (further referred to as “the adapter”) implementing the same 

interface as VisIt but with Vistle’s own implementation.  

Before the start, some environment-variables have to be set so that the simulation finds the 

Vistle libraries and to make sure Vistle uses the same MPI-environment as the simulation. Table 

2 gives an overview of these variables and when and for which environment to set them. For 

the simulation variables it has to be ensured that they are passed to all MPI ranks. 

In multi-process mode Vistle can be connected by starting Vistle and launching the LibSim-

controller module, where the connection file created by the simulation must be opened. Figure 

38 illustrates the data exchange in this case. On rank zero the module will connect to the 

connection-socket and send a connection request to the simulation. If the request is valid the 

simulation closes this socket and links to the adapter. The adapter is initialized with the 

arguments of the connection request message. The adapter then connects to the modules 

control-socket which is used to send meta data about the simulation to the module and to steer 

the simulation via commands. With this meta data the module creates output ports for the 

simulation provided data and buttons for the simulation’s commands. Custom commands 

that take string input are respectively represented as string input fields that trigger the 

corresponding command on change. When the connected simulation produces data, depending 

on the configured “frequency” parameter and the connected output ports of the module, data 

objects are transformed and copied to SHM in the adapter and then passed to the Vistle 

pipeline.  This will trigger an automatic execution of the LibSimController module and 

therefore propagates the execution trough the following connected modules. Depending on the 

“keep timesteps” parameter a timeline or a single snapshot is generated. 
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Figure 38: Schematical data exchange between a LibSim-instrumented simulation and Vistle in multi-

process mode 

In single-process mode Vistle has to be started in the simulation process. Therefore, the Vistle 

hub is used to send the connection request to the simulation to trigger the linkage to the adapter 

(pass the path to the connection file with the --libsim command line argument to Vistle). The 

adapter then launches Vistle in a separate thread and the module can be started. For this to work 

the simulation must use MPI_Init_thread with MPI_THREAD_MULTIPLE since Vistle and 

its modules all use dedicated threads and may make MPI calls. Figure 39 shows how data is 

exchanged with this architecture. 

 

Figure 39: Schematical data exchange between a LibSim-instrumented simulation and Vistle in single-

process mode 

In both modes the connection via the control-socket is exclusive to rank zero. The messages are 

then broadcasted via MPI to the other ranks so that the commands can be executed parallelly. 

This MPI communication is non-busy to not block other simulation/Vistle.threads. The 

commands are declared by the simulation via the LibSim interface and can be triggered through 

buttons in the controller module. As shown in Figure 16 the module displays the data provided 

by the simulation with its output ports. To retrieve the data from the simulation the 

corresponding output ports must be connected and the module must be executing (it will stay 

in executing state until cancelled). This way data selection can be adapted and the post-

processing can be started/stopped at any point during runtime to avoid overhead of transforming 

data when it is not needed. 

9.2.2 For SENSEI instrumented simulations 

To enable the Vistle post-processing-backend our SENSEI version has to be built with the 

ENABLE_VISTLE flag. The Vistle backend is then compiled and linked with Vistle’s libraries, 

therefore using a single- or multi-process Vistle is a compile time decision. Because of the 

compile time linking the only specific environment variable is VISTLE_KEY that has to be 

set if a remote connection with the compute cluster is desired. The whole connection and 

communication process between the SENSEI analysis adaptor and Vistle’s SenseiController-

module is implemented via SHM communication. The backend also transforms SENSEI’s VTK 

objects to Vistle’s format. In case of a multi-process Vistle they are copied to SHM while they 

are passed as pointers in the single process variant. In single-process mode the backend will 

directly start Vistle without a user interface (UI). Again MPI_Init_thread with 

MPI_THREAD_MULTIPLE is required for this to work.The SENSEI MPIManager will 

automatically take care of this when used by the simulation. The pipeline can then be controlled 

by attaching a Vistle UI (vistle_gui or vistle_tui) to the simulation’s Vistle instance. In multi-

N
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process-mode Vistle can be started regularly. The SenseiController-module has to be started 

and a connection file outputted by the backend must be loaded. For the default file location this 

is done automatically. This module supports only basic steering like “run” and “pause”, 

otherwise the functionality is similar to the LibSim module. 
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MPISIZE MPI-size of the simulation  X X   

MPIHOSTS MPI-hosts of the simulation (or MPIHOSTFILE)  X X   

MPIHOSTFILE Host-file of the simulation (or MPIHOSTS)  X X   

VISTLE_ROOT Path to Vistle’s build directory X   X X 

LD_LIBRARY_PATH Add path to Vistle’s lib directory X X  X  

Table 2: Environment variables needed to run simulations in-situ with Vistle 

 

 


