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List of abbreviations 
ACARE Advisory Council for Aeronautical Research in Europe 
AI Artificial Intelligence 
CAA Computational aeroacoustics 
CFD Computational fluid dynamics 
DOF Degrees of Freedom 
FWH Ffowcs Williams-Hawkings 
HPC High-performance computing 
LES Large-eddy simulation 
m-AIA multi-physics AIA 
MPI Message passing interface 
NACA National Advisory Committee for Aeronautics 
SMC Small metal chevron 
STL Stereolithography 
UC Use Case 
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Executive Summary 
 
This document presents the progress made in the m-AIA Application Use Case UC-3 within 
reporting period 1 covering the first year of the EXCELLERAT P2 project. Based on the 
detailed roadmap of the workflow development defined in deliverable D2.1, the workflow of 
the use case is summarised and the achieved progress with respect to the defined workflow, 
objectives and success criteria is presented. 
In summary, the workflow development for UC-3 has progressed according to the schedule 
defined in deliverable D2.1. Work has been performed on the individual tasks planned for the 
first year of the project. 
That is, progress has been made concerning the development of the individual workflow 
components, the workflow automation, the exascale readiness of the m-AIA code and the 
implementation of an optimisation approach. 
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1 Introduction 
In this use case, a shape optimisation of chevron nozzles is performed, which is representative 
for problems with expensive objective function evaluations in the important technical field of 
noise reduction. It includes a constraint of minimum jet thrust loss, which has to be weighted 
with the goal of noise reduction. The accurate prediction of the emitted sound is based on a 
turbulence scale resolving CFD method, directly coupled with a computational aeroacoustics 
solver, which is a typical example of a multiphysics application. The necessary large number 
of objective function evaluations can only be performed on exascale HPC systems. An AI-based 
optimiser, developed by the project partner FhG, will be used to efficiently identify the optimal 
solution. The motivation for the use case is given e.g., by ACARE, who established the 
Flightpath 2050, a new goal for more rigorous noise reduction by 65 percent relative to the 
capabilities of typical new aircraft in 2000. Despite the progressive introduction of high-bypass-
ratio aircraft engines and chevron nozzles, which possess a sawtooth-like shape at the engine’s 
trailing edge, jet noise still is a significant source of aircraft engine noise. 
Unlike the optimisation of the aerodynamic performance or structural weight, noise reduction 
is still to a large extent an unsolved problem. One of the challenges connected to noise reduction 
is a reliable and accurate prediction of the sound pressure level in the far field, which is often 
generated by intricate flow phenomena. Therefore, turbulence scale resolving simulations have 
to be performed in many cases to obtain the correct sound pressure level. For example, the tip 
gap vortex in an axial fan can generate noise, which cannot be predicted with methods based 
on Reynolds averaged solutions. At present, shape optimisations are not possible for such cases 
due to the computational expensive evaluation of the objective function. 
A typical chevron nozzle shape is shown in Figure 1 and the setup for the flow and the acoustic 
field prediction is depicted in Figure 2. 
 

 
Figure 1: Baseline (left) and typical chevron nozzle (right). 

 

 

Figure 2: Computational setup with the LES or CFD, and the CAA domain for the jet noise prediction. 
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2 Objectives of the Use Case 
It is the objective of this use case to perform a shape optimisation for the shape of the chevrons 
at the nozzle trailing edge to minimise the jet noise. During aircraft take-off and cruise flight, 
however, the use of chevron nozzles can lead to a substantial and unwanted loss of thrust. 
Therefore, the optimisation has to be performed under the constraint that the thrust is minimally 
affected. Since the objective function evaluation is computationally extremely expensive, HPC 
clusters of exascale have to be used efficiently. Therefore, an advanced workflow has to be 
designed, which can fully exploit the available computing resources. The goal is to implement 
all necessary workflow components such as the automatic generation of chevron shapes, the 
execution of the simulation for the flow field prediction and the determination of the complex 
objective function. Additionally, highly resolved simulations should be performed, which 
enable the identification of the essential noise source locations and to determine the effect of 
the various chevron parameters on the generation of the acoustic waves. For the execution of 
the use case, the workflow couples a high-fidelity 3-D aeroacoustics solver with state-of-the-
art AI optimisation algorithms provided by the project partners FhG and data analytic tools to 
systematically perform thrust-constrained noise minimisation of chevron nozzle shapes. 
For UC-3 the following success criteria are used during the course of the project to verify its 
success: 

• Development of a workflow, which can automatically perform shape optimisations. 

• Efficient usage of HPC hardware during the workflow execution. 

• Identification of chevron shapes with minimized noise emission. 

• Successful analysis of noise generation mechanisms based on large scale simulation 
runs on exascale hardware. 

• Analysis of noise source mechanisms based on large scale simulations. 
 

3 Workflow Description 
The accurate prediction of the overall sound pressure level in the far field requires several 
numerical methods which must be combined to obtain the final result for the objective function. 
The CFD solver for the prediction of the turbulent flow field is directly coupled to the CAA 
solver for the determination of sound pressure levels in the acoustic near field, which then 
delivers unsteady data for a FWH method, which can compute the overall sound pressure level 
in the far field. The coupling between the CFD and CAA solver is schematically explained in 
Figure 3.  

 
Figure 3: Coupling of the LES or CFD with the CAA solver and the FWH method. 

A single simulation is performed in various stages to minimize the required computational 
effort. First, the CFD solver is executed alone, until a fully developed flow field and a 
sufficiently converged time averaged flow field is obtained. Subsequently, the CFD and CAA 
solver are executed in a fully coupled manner until the unsteady acoustic pressure signal is 
obtained in the near sound field. Finally, the history of the unsteady pressure signal on a closed 
control surface is used to predict the noise in the acoustic far field. The overall sound pressure 
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level is determined at reference locations for the evaluation of the objective function. In 
addition, the flow field is postprocessed to compute the nozzle thrust. 
The full workflow to perform chevron shape optimisations is schematically depicted in Figure 
4: 

 
Figure 4: Workflow components for the constrained shape optimisation of chevron nozzles. 

In more detail, the workflow components for the jet noise prediction are: 

• AI-based optimiser provides a chevron nozzle design, i.e., new chevron geometry 
parameters. 

• Geometry generator generates STL surfaces for the mesh generation for the specific 
chevron nozzle shape. 

• The grid generation generates refined meshes for the LES/CFD and CAA simulation. 

• The LES/CFD simulation is performed to determine the time averaged mean flow field. 

• The coupled CFD/CAA simulation is performed to predict the acoustic pressure in the 
near field. 

• FWH method to predict the acoustic far-field. 

• Postprocessing of the FWH and CFD results for the cost or objective function 
evaluation. 

Regarding an optimisation process, the simultaneous execution of the many required individual 
runs poses a significant challenge for the coordination of the computational resources (various 
hardware platforms, queueing systems). Since the runs are expected to last for different lengths 
of time an intelligent, optimised coordination of the simulations is necessary. Since the AI-
based optimisation algorithm is directly fed with data from the simulation (in situ) the 
simultaneous provision of large CPU/GPU resources is challenging. To enable a subsequent 
analysis of the simulation results, it is necessary to efficiently store the data on long-term 
storage systems which is challenging due to the large amount of data. 
In summary, multiple simulations with different phases or configurations, various output files, 
and large data volume have to be performed. This requires a reliable and fault tolerant 
automation and high efficiency without the necessity of user interaction or supervision. 
The exascale execution profile is defined by many small scale runs for the shape optimisation, 
i.e., requiring on the order of O(1000) runs. In addition, a few large scale runs (O(10)) will be 
performed for advanced data analytics to identify physical mechanisms. Pre-exascale hero runs 
(O(1)) are planned for higher Reynolds number, coaxial jet configurations and very high-
fidelity results to demonstrate exascale readiness. 
 

AI based Optimiser 
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4 Progress achieved 
In UC-3 an optimisation workflow for chevron nozzles with the target of noise mitigation is 
developed. To achieve this, the individual workflow components required for an aeroacoustic 
optimisation workflow have been defined such that ultimately the full approach will be able to 
perform the targeted chevron nozzle optimisation to reduce jet noise. Furthermore, the HPC 
hardware requirements for all workflow steps with respect to the exascale execution profile 
with different types of simulation runs have been analysed. 
Based on the workflow analysis, work has been performed on the development of the individual 
workflow components, which are schematically depicted in the full optimisation workflow in 
Figure 4. As an input for the grid generator and the subsequent simulation runs the chevron 
nozzle shape needs to be generated according to some chevron geometry parameters, that will 
ultimately be provided by the AI-based optimiser. Therefore, a geometry generator to generate 
parametrised chevron nozzle geometries has been developed. The Matlab/Octave tool generates 
a new chevron geometry in form of STL data as a direct input for m-AIA. For now, the geometry 
parameters include the chevron tip angle, i.e., the immersion of the chevron in the jet radial 
direction, and a shape factor to modify the roundness/sharpness of the chevron shape in the jet 
circumferential direction. In Figure 5 chevron nozzle geometries are compared to the SMC006 
baseline geometry. That is, the chevron tip angle of the baseline configuration is increased from 
5 to 10 degrees in a first step. In a second step, the triangular chevron shape is modified such 
that more rounded chevron lobes are obtained. 

 
Figure 5: Chevron geometry generator: close-up of STL data for the SMC006 baseline and two variations 

of the chevron geometry. 

Regarding the parallel hierarchical Cartesian grid generator integrated in the m-AIA simulation 
framework several improvements regarding the generation of complex grids have been 
achieved. That is, by balancing the grid cells after each step of the grid generation among all 
MPI ranks the process is significantly sped up, while at the same time less compute nodes are 
required. Considering that each chevron nozzle configuration will require multiple grid files to 
be created for the different m-AIA simulation steps, these runtime savings will quickly add up 
reducing resource usage, and especially a faster overall time to solution in the optimisation 
workflow can be achieved. For the computation intensive simulation steps with the m-AIA 
code, significant improvements in performance and parallel efficiency for large-scale multi-
physics simulations have been achieved. Repeated testing of an aeroacoustic application that 
was scaled up to utilize the full HAWK HPC system of about 500,000 compute cores allowed 
the identification and elimination of performance issues and emerging bottlenecks, which were 
not visible for smaller scale runs or less complex simulation setups. For example, a critical issue 
related to a specific inter-process communication was discovered. Appropriate changes were 
introduced into the critical part of the communication modules in m-AIA, which eliminated the 
observed performance issues at large scale. 
The strong scalability of a realistic coupled CFD/CAA chevron jet application with m-AIA on 
HAWK is shown in Figure 6. The predicted flow field and the acoustic field for a baseline 
nozzle without chevrons is visualised in Figure 7. With about 300 million CFD cells and 1*109 
CAA DOF this setup corresponds to a smaller scale run according to the exascale execution 
profile defined in WP2 for UC-3. As evident the code shows excellent strong scalability when 
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going from 2048 up to 262144 MPI processes, i.e., the maximum allocation size on HAWK, 
achieving about 86 simulation timesteps per second compared to 0.68 timesteps for the baseline. 
In summary, the progress made on the m-AIA code is key for its future exascale readiness, 
showing excellent strong scalability and efficient resource usage for a realistic use case on the 
full HAWK system. 
In addition to the work on the individual workflow components, work has been performed on 
the workflow automation of the m-AIA simulation pipeline for aeroacoustic predictions, to 

automatically perform all the individual preprocessing steps, simulation runs and 
postprocessing steps that are required for a single function evaluation embedded in the 
optimisation loop, i.e., a single jet noise prediction for a specific chevron nozzle geometry. 
 
Regarding the targeted AI-based optimisation, RWTH started the collaboration with FhG to 
work on the optimisation approach with a problem analysis, definition of requirements and plan 
with next steps. In a first step a simplified small-scale optimisation test setup consisting of a 
NACA profile was determined, for which the optimisation workflow will be tested at low 
computational cost. The NACA airfoil will be optimised for reduced drag subject to certain 
constraints, such as, lift and volume of the airfoil. Initial tests at low inflow Mach- and Reynolds 
numbers were conducted. In Figure 8 exemplary results for a NACA 2412 airfoil at two angles 
of attack (AoA) of 0 and 5 degree are shown. The computational grids consist of approximately 
105 cells. As evident by the ratio of lift and drag coefficient in Figure 9 the simulations quickly 
converge in about 10,000 time steps rendering the setup suitable for testing the optimisation 
workflow at low computational cost. 

Figure 8: Flow field around NACA 2412 airfoil 
for two angles of attack. 

Figure 6: Strong scaling for a coupled 
CFD/CAA chevron jet application with m-
AIA. 

Figure 7: m-AIA coupled CFD/CAA 
simulation: baseline nozzle without chevrons 
showing flow structures (bottom) and the 
acoustic field close to the nozzle (top). 

Figure 9: Convergence of lift to drag coefficient 
ratio for NACA 2412 airfoil at two angles of 
attack. 
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In the next steps, these CFD-based simulation models, starting with the NACA airfoil testcase, 
will be integrated into a surrogate-based sequential closed-loop optimisation procedure 
allowing for a high degree of automation. Bayesian optimisation (BO) with Gaussian Process 
Regression (GPR) [1] prior as the surrogate machine learning model is one example of 
surrogate-based optimisation strategy. This method is going to be developed and tested, first on 
the NACA airfoil testcase and later on the nozzle shape optimisation task. The GPR-based BO 
workflow consists of the following steps. 

1. Formulate the original optimisation problem including the objective function 𝑓𝑓 to be 
optimised for the optimisation variables 𝒙𝒙 and constraints forming the feasible set 𝓧𝓧.  

2. Perform initial objective function evaluations by running the m-AIA-enabled CFD 
simulations to compute the objective function 𝑓𝑓 using a space-filling design method for 
the optimisation variables like Latin Hypercube Sampling (LHS). 

3. Start the main optimisation loop using the GPR-based BO procedure, which 
sequentially updates the data and the GPR surrogate model, i.e., 𝑓𝑓 ≈ 𝑓𝑓 with 
𝑓𝑓(𝒙𝒙)~𝒢𝒢𝒢𝒢�𝑚𝑚(𝒙𝒙),𝑘𝑘(𝒙𝒙,𝒙𝒙′)�, and solves an auxiliary optimisation problem to trade-off 
exploration and exploitation to efficiently leverage the surrogate model to propose the 
next simulation to be run, i.e., efficient simulation planning. 

A general original problem formulation is stated in the following equation with 𝒙𝒙∗ indicating 
the true optimum and 𝒑𝒑 denoting preset resp. given parameters, like flow conditions 
characterised by the problem-specific Reynolds and Mach number. 
 

𝒙𝒙∗ = arg max
𝒙𝒙∈𝓧𝓧(𝒑𝒑)

𝑓𝑓(𝒙𝒙|𝒑𝒑) 

 
The original problem formulation is reformulated to the auxiliary problem given in the next 
equation, which is sequentially updated using the surrogate model 𝑓𝑓 and solved, hence the index 
𝑛𝑛 + 1, to obtain the next queried simulation with inputs 𝒙𝒙𝑛𝑛+1. The updated data in step 𝑛𝑛 is 
denoted as 𝐷𝐷𝑛𝑛 = {(𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖 + noise)|1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} and the corresponding prior knowledge as 
𝜫𝜫𝑛𝑛, which is used to select the prior mean 𝑚𝑚(𝒙𝒙) and kernel function 𝑘𝑘(𝒙𝒙,𝒙𝒙′) for the GPR 
model. 

𝒙𝒙𝑛𝑛+1 = arg max
𝒙𝒙∈𝓧𝓧� (𝑫𝑫𝑛𝑛,𝜫𝜫𝑛𝑛)

𝛼𝛼�𝑓𝑓(𝒙𝒙|𝒑𝒑,𝑫𝑫𝑛𝑛,𝜫𝜫𝑛𝑛,𝜽𝜽)|𝜽𝜽𝜶𝜶� 

 
In that sense, exploration means to run simulations, which are the most informative to decrease 
the uncertainty of the surrogate model. In contrast to that, exploitation refers to the execution 
of simulations, which are already predicted by the surrogate model to the most promising to be 
optimal. The trade-off of exploration and exploitation by optimising an acquisition function 𝛼𝛼 
with hyperparameters 𝜽𝜽𝜶𝜶, e.g., Upper Confidence Bound (UCB) in the simplest case, instead 
of directly optimising the surrogate model 𝑓𝑓 renders this procedure as a global optimisation 
method. In general, the efficiency of surrogate-based optimisation workflows depends on a 
carefully designed and tuned surrogate model, i.e., prior mean 𝑚𝑚(𝒙𝒙|𝜽𝜽𝑚𝑚) and prior kernel 
function 𝑘𝑘(𝒙𝒙,𝒙𝒙′|𝜽𝜽𝑘𝑘) and it hyperparameters 𝜽𝜽 = [𝜽𝜽𝑚𝑚,𝜽𝜽𝑘𝑘], and a proper definition resp. 
handling of optimisation bounds, like box constraints 𝒙𝒙min ≤ 𝒙𝒙 ≤ 𝒙𝒙max, resp. the feasible set 
𝓧𝓧�  in general. When using a stochastic surrogate model like the GPR it is possible to incorporate 
prior knowledge 𝜫𝜫𝑛𝑛 about the physics-based optimisation problem, like smoothness 
assumptions of the objective 𝑓𝑓, to handle noisy expensive-to-evaluate black-box objective 
functions such as CFD-based simulations in an informed manner. In combination with 
automatic differentiation applied on the GPR, gradient-based Non-Linear Program (NLP) 
solvers can be used to solve the corresponding auxiliary problem to realise an efficient and 
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highly automated optimisation procedure. 
 

5 Conclusion 
RWTH will focus on the development of the optimisation loop using the Bayesian optimiser 
and the AI based optimiser provided by the project partner FhG. Once the full optimisation 
workflow and a reliable and fault tolerant automation of the complete aeroacoustic prediction 
process have been established, it will be possible to perform constrained shape optimisations. 
First, the approach will be tested and validated using the defined simplified small-scale test 
setups. Collaboration with FhG will then concentrate on the integration of the AI-based 
optimiser, while also more sophisticated aeroacoustic test cases will be targeted. 
Furthermore, the simultaneous execution and the interleaved scheduling of individual runs 
poses a significant challenge. Since the individual runs for the determination of the objective 
function are expected to last for different run-times an intelligent, optimised coordination of the 
simulations will be necessary. 
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