

HORIZON-EUROHPC-JU-2021-COE-01

The European Centre of Excellence for Engineering

Applications
Project Number: 101092621

D3.1 Report on Exa-Enabling Methodologies

Ref. Ares(2023)7806788 - 16/11/2023

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 2 of 34

The EXCELLERAT P2 project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 101092621. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and
Germany, Italy, Slovenia, Spain, Sweden and France.

Work Package: WP3 Exa-HPC Methodologies and Technologies
Author(s): Ansgar Niemöller, Matthias

Meinke
RWTH

 Jonathan Vincent KTH
 Gabriel Staffelbach CERFACS
 Michael Wagner DLR
 Herbert Owen BSC
 Matic Brank UL
 Francesco Salvadore CINECA
 Giulio Soldati, Sergio

Pirozzoli
URMLS

 Mattia Paladino E4
 Davide Padeletti USTUTT
Approved by Executive Centre

Management
16.11.2023

Reviewer Florent Duchaine CERFACS
Reviewer Janez Povh UL
Dissemination
Level Public

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 3 of 34

Date Author Comments Version Status

26.10.2023 Herbert Owen First draft V0.1 Draft

6.11.2023 Herbert Owen Second draft V0.2 Draft

14.11.2023 Herbert Owen Final version V1.0 Final

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 4 of 34

List of abbreviations
BSC Barcelona Supercomputing Center
CAA Computational Aeroacoustic
CoE Center of Excellence
CFD Computational Fluid Dynamics
CRM Common Research Model
DLR German Aerospace Center
DoA Description of the Action
DoF Degree of Freedom
HLRS High-Performance Computing Center Stuttgart
HPC High Performance Computing
KTH Kungliga Tekniska högskolan, Royal Institute of Technology
LES Large-Eddy Simulation
RANS Reynolds-averaged Navier-Stokes
RCB Recursive Coordinate Bisection
RWTH Rheinisch-Westfälische Technische Hochschule
SAneg Spalart-Allmaras one-equation turbulence model in its negative form
UL University of Ljubljana
URMLS University of Rome LA SAPIENZA

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 5 of 34

Executive Summary
The scalability of CODA was analysed on the largest available partition of DLR’s main
production system. The performance of the code was tested on various upcoming CPU
architectures and on Nvidia A100 GPUs.
RWTH significantly improved the performance and parallel efficiency for large-scale
multiphysics simulations with the code m-AIA. The code was scaled up to utilise the full
HAWK HPC system of about 500,000 compute cores.
BSC tested Alya on 3 different machines: MareNostrum IV and MN3 CTE-Power at BSC, and
Polaris at Argonne Leadership Computing Facility. Moreover, it has recently received
computational resources at the Karolina EuroHPC supercomputer and is currently starting tests
on that machine too. Better memory management has allowed to significantly improve
scalability on GPUs.
CINECA and URMLS are using a multi-paradigm approach for their code FLEW which
involves a two-phase code development line. Code development, for example with new
algorithms, uses a backend “master paradigm” based on CUDA Fortran. This main code is then
transformed to “secondary paradigms” using automatic translations in house developed tools.
The UL team focused on the field line tracing optimisation. The code L2G has been optimised
for better computational efficiency. The algorithmic improvements of the code are octree space
partitioning and bounding box partitioning of large meshes to decrease time of line triangle
intersection checks.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 6 of 34

Table of Contents
1 Introduction .. 9
2 Task 3.1 Performance & Efficiency Engineering .. 10

2.1 CODA ... 11
2.2 AVBP ... 12
2.3 m-AIA .. 13
2.4 Alya .. 15
2.5 FLEW ... 17
2.6 OpenFoam, ElmerFEM, Raysect, Mitsuba 2 ... 22

3 Task 3.3: Testing, Validation and Deployment .. 24
4 Task 3.4: Exascale Engineering ... 29

4.1 CODA ... 29
4.2 AVBP ... 29
4.3 m-AIA .. 30
4.4 Alya .. 31

5 Conclusion .. 33
6 References .. 34

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 7 of 34

Table of Figures

Figure 1: Scalability of the AVBP code on NVIDIA V100 and A100. 12
Figure 2: m-AIA coupled CFD/CAA chevron jet simulation: Wall time per time step for three

selected MPI ranks showing a performance variability over time on HAWK with 16384
MPI ranks in total. .. 13

Figure 3: m-AIA coupled CFD/CAA simulation: compute time over 1000 timesteps for all
8192 MPI ranks relative to the average compute time on that MPI rank, showing process
performance variability and turbo boost events on complete processors. 13

Figure 4: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA. 14
Figure 5: Parallel efficiency of Alya on Marenostrum IV for different problems sizes and

loads varying from 19500 to 156000 DoF per core. .. 15
Figure 6: Computational time per DoF, time step(ite) and GPU of on two different GPU

machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100) for meshes ranging
from 1283 to 2653 elements (57 to 508 million DoF) ... 16

Figure 7: Alya profiling with the Nvidia profiler ... 16
Figure 8: Development strategy: CUDA Fortran and translations. .. 18
Figure 9: STREAmS-2 object-oriented design which will be used in FLEW 19
Figure 10: Planned backend supported by FLEW: main paradigm (CUDA Fortran), translated

paradigms (CPU, HIP), optional paradigms (OpenMP). ... 20
Figure 11: Development strategy using automatic translation. .. 21
Figure 12: A comparison of execution times for different mesh size (triangular mesh). The

legend refers to number of threads. .. 23
Figure 13: Strong scaling of AVBP on the ADASTRA system using 4 Mi250 per node.

Nonreactive windfarm case. ... 30
Figure 14: Strong scaling for a coupled CFD/CAA chevron jet application with m-AIA. 30
Figure 15: m-AIA coupled CFD/CAA simulation: baseline nozzle without chevrons showing

flow structures (bottom) and the acoustic field close to the nozzle (top). 31
Figure 16: Optimizing the resources. Workflow for elastic computing of CFD simulations,

involving different codes and libraries: Alya (CFD), TALP (efficiency measures) and
COMPSs (elastic computing). .. 31

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 8 of 34

Table of Tables

Table 1: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA. 14
Table 2: Comparison of Alya computational time [ns] per DoF, time step and GPU of on two

different GPU machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100)
before and after the Hackathon. ... 17

Table 3: Wall clock time [s] depending on the mesh size and number of threads. 22
Table 4: EXCELLERAT P2 codes and availability: data from CASTIEL 2 survey. 25
Table 5: EXCELLERAT P2 codes and deployment on EuroHPC systems: data from

CASTIEL 2 survey. .. 26
Table 6: EXCELLERAT P2 deployment status and requirements: data from CASTIEL 2

survey. .. 28

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 9 of 34

1 Introduction
Work package three is intended to support all the algorithmic and computational developments
of the different methodologies defined to execute the use cases. It is focused on the appropriate
use of software and hardware so the use cases can be executed with exascale workflows. In the
context of heterogeneous systems, the best mapping of algorithms and architectures will be
analysed in detail, considering both computing time and energy costs. The research and
development carried out in this work package will be crystallised into exascale-type workflows
for the reference applications. It includes code developments and optimisations of the
simulation elements to exploit all levels of parallelism from heterogeneous HPC systems, and
testing on emerging technologies and cooperation with vendors for co-design. Considering the
diversity of use cases in terms of computational methods, discretisation strategies, HPC
algorithms and simulation workflows, the activities are grouped into four tasks.

This document reports advances on Exascale enabling methodologies for all codes in the
EXCELLERAT P2 project. The report includes advances in Tasks 3.1, 3.3 and 3.4 as
established in the grant agreement. Task 3.2 is omitted since it has started recently (M6) and it
is not included in the grant agreement. The first task focuses on the optimisation of the
computational efficiency of the simulation methodologies employed in the use case at inter-
and intra-node levels. Advances in code scalability, code optimisation and porting to GPU are
reported. For Task 3.3 progress on Testing, Validation and Deployment is presented. Task 3.4
on Exascale Engineering deals with the specific developments required to extend the
simulations workflows from Task 3.1 to achieve the large-scale readiness required in exascale
simulations.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 10 of 34

2 Task 3.1 Performance & Efficiency Engineering
Contributors: BSC, KTH, RWTH, CERFACS, DLR, CINECA, UL

This task is focused on the optimisation of the computational efficiency of the simulation
methodologies employed in the use case at inter- and intra-node levels. It includes the
combination of different parallelisation strategies based on distributed and shared memory,
stream processing on GPU accelerators and efficient usage of hierarchical memory systems.
Load balancing and communication/synchronisation reduction will be conducted in
multiphysics applications and workflows including data-driven methods with Artificial
Intelligence and multi-disciplinary analysis and optimisation. Advanced features of MPI such
as non-blocking collectives, fault tolerance and remote memory access will be considered for
some use cases. Finally, specific algorithmic modifications and communication strategies will
be explored in the workflows and mapped to the supercomputing architectures. Optimisations
considering both the algorithmic design and the implementation strategy such as energy
efficiency and performance portability will be pursued.

The trend of HPC architectures in recent years and in particular the increasingly pervasive
presence of accelerated architectures represents a great opportunity for achieving simulation
objectives of great impact on both research and engineering application. To seize these
opportunities, however, it is necessary to have software capable of adequately exploiting the
hardware resources available. In this sense, the traditional approach to programming, which
sees the compiler and the operating system as capable of providing a simple abstraction of the
hardware to the developer, is in crisis. In HPC, software architects and developers are supposed
to have a substantial knowledge of target hardware and program from that perspective using
the adequate programming paradigms.

In a nutshell, this type of interaction can be framed within three main performance-oriented
objectives:

1. parallelisation-oriented software design starting from the choice of algorithms that are
or remain particularly efficient if parallelised;

2. implementation of algorithms “exposing” the parallel potential as much as possible;
3. choice of suitable programming paradigms to best use the available hardware.

From the point of view 1, particularly in the field of Computational fluid dynamics (CFD), the
issues have been the subject of reflection for decades now, even if the balances of the parameters
in the field are constantly evolving and can lead to changing conclusions. For example, an
implicit algorithm for temporal evolution allows the use of a larger integration step, but the
possible parallelisation methods are less efficient. On the contrary, an explicit algorithm,
penalised by a very limited time step, can however be overall better due to its optimal versatility
from a parallel calculation perspective.

From the point of view 2, it is necessary to remember that the same algorithm can be
implemented in different ways and these implementation choices can significantly affect the
compiler's ability to translate the source into efficient and truly parallel machine code. The
conservative finite difference schemes used in FLEW can be implemented in a more compact,
more efficient way in serial optics, or in a more extensive way, which however turns out to be
more efficient in parallel optics.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 11 of 34

What is expressed in points 1 and 2 strongly depends on the particular type of hardware or
generation of hardware considered, but there are principles to be respected that are generally
valid from the perspective of the current most widespread HPC architectures. From the point
of view 3, however, the adaptation of the code requires, in addition to a very high commitment,
adaptability over time to the different parallel programming paradigms which can be
substantially different. We distinguish four types of paradigms:

• vendor-specific: such as CUDA for NVIDIA GPUs or HIP for AMD GPUs
• standardised: such as OpenCL, OpenMP, OpenACC, SYCL
• intrinsic of the languages: C++ STL, Fortran do concurrent
• external: such as, for example, Legion, Kokkos, Raja

Each paradigm has advantages and disadvantages in terms of performance, maintainability,
readability, portability and other relevant characteristics of the software that can be produced.
Choosing one paradigm over another depends on the specific objectives of a certain porting
activity.

2.1 CODA
During the reporting period three main tasks were carried out for CODA, the FlowSimulator
framework, and the sparse linear systems solver Spliss that is used by CODA: First, we assessed
the baseline scalability of CODA and FlowSimulator on the largest available partition of DLR’s
main production system CARA with the NASA common research model in a strong and weak
scaling scenario. Second, we compared the performance of CODA on various upcoming CPU
architectures. Third, CODA with Spliss running on GPUs was evaluated on the Nvidia A100
architecture and the performance was compared to the DLR production systems.

First, we focused on evaluating the scalability of CODA on CARA with Use Case UC-1. CARA
is a CPU system based on the AMD Naples architecture. The use case solves the Reynolds-
averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras turbulence model in its
negative form (SA-neg). The use case runs on an unstructured mesh from the NASA Common
Research Model (CRM) with about 5 million points and 24 million volume elements. The mesh
is a rather small mesh, which has been chosen for a strong scalability analysis (fixed problem
size) of CODA at currently available HPC systems. Production meshes are typically at least 10
times larger and accordingly achieve comparable efficiency on much higher scales. For the
weak scalability analysis (fixed workload per core), we use different mesh sizes from the CRM
mesh family ranging from 3 to 192 million elements and solve the use case with an according
number of cores. CODA achieves about 61% parallel efficiency on the largest available
partition on CARA with 512 nodes and 32,768 cores in the strong scaling scenario. In the weak
scaling scenario, a parallel efficiency of 74% was achieved on 32,768 cores.
Second, in a continuous effort to test and evaluate CODA and FlowSimulator on new CPU
architectures, so far, we have evaluated the AMD Zen1, Zen2, Zen3 and Zen4 architecture, the
Intel Icelake architecture and the ARM-based Graviton2 and Graviton3 architecture. For the
evaluation we use standardised benchmarks and a containerised version of CODA and
FlowSimulator including the use case on resources in the Germany-based AWS cloud by means
of a cooperation with Amazon. These measurements allow us to adapt CODA to new
architectures during the early-access phase and evaluate which systems offer best performance
ahead of deployment to new full-scale HPC systems and provide valuable insight for designing
DLR’s own future HPC systems.
Third, we evaluated the entire workflow with Spliss running on GPUs. A significant part in
computational fluid dynamics (CFD) simulations is the solving of large sparse systems of linear
equations resulting from implicit time integration of the Reynolds-averaged Navier-Stokes

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 12 of 34

(RANS) equations, which are computed via the sparse linear systems solver Spliss. Next to
leveraging a wide range of available HPC technologies such as hybrid CPU parallelisation,
Spliss allows offloading the computationally intensive linear solver to GPU accelerators, while
at the same time hiding this complexity from the CFD solver. We used Spliss to evaluate the
entire workflow on a GPU system, whereas FlowSimulator and CODA are executed on the
CPU part and the linear solver on GPUs. When comparing the CPU system CARO (AMD
Rome) and the Nvidia A100 GPU system Juwels Booster at Jülich Supercomuting Center, the
Use Case UC-1 achieves a speedup of up to 8.4 in a node-wise comparison and a speedup up
to 1.9 in a power-equated comparison. The improvements made to establish multi-GPU
capabilities for the Spliss solver allowing for efficient and scalable usage of large GPU systems
and an evaluation of performance and scalability on CPU and GPU systems were published
recently [6]. With these improvements CODA is able to support European Nvidia-based GPU
systems such as LEONARDO or MareNostrum 5. The support for AMD-based GPU systems
such as LUMI-G is currently evaluated.

2.2 AVBP
Use case UC2 (hydrogen combustion) workflows requires two main parallel components on
the road to exascale. First, an exascale-ready AVBP. This is handled in Task 3.4 with the
portability of the code for AMD GPUs. Performance optimisation and efficiency of the code
will be addressed in the next phases. Second, a highly parallel and efficient mesh adaptation
component. With this in mind, the first period of EXCELLERAT 2 has focused on the
robustness and reproducibility of the parallel mesh refinement library TREEADAPT. First,
developed in the EXCELLERAT 1, it has already been used up to 8192 cores to generate 2B
element meshes. However, it was soon discovered that results were not reproducible due to
parallel effects in PARMETIS and other round-off errors. We have just recently published an
alpha version of TREEADAPT (version 0.8.1) that is reproducible and usable up to 2048 cores.
Further work is expected to improve the mpi core capabilities and use the hierarchical
partitioning capabilities embedded in TREEADAPT.
In parallel, we have been testing AVBP on JUWELS Booster (A100-40G) and other NVIDIA
GPU clusters (V100-16G) to ensure the performance of the code. Figure 1 shows the scalability
of the AVBP code on NVIDIA architectures for a 1B element mesh reactive Large Eddy
Simulation (LES). Scalability up to 1024 GPUs is confirmed and performance between V100
and A100 almost doubles for low GPU counts. The difference in high GPU counts is lower as
the data per GPU is not sufficient for the faster A100. H100 tests were performed by NVIDIA
and suggests another x2 acceleration per GPU at least, but could not be confirmed
independently yet. We will test the code on Grace Hopper APU in the first quarter of 2024.

Figure 1: Scalability of the AVBP code on NVIDIA V100 and A100.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 13 of 34

2.3 m-AIA
During the first project year RWTH significantly improved the performance and parallel
efficiency for large-scale multiphysics simulations with the code m-AIA. Repeated testing of
an aeroacoustics application that was scaled up to utilise the full HAWK HPC system of about
500,000 compute cores allowed the identification of performance issues which were not visible
for smaller scale runs or less complex simulation setups. For example, a critical issue related to
a specific inter-process communication was discovered. Appropriate changes were introduced
into the critical part of the communication modules in m-AIA, which eliminated the observed
performance issues at large scale.
Other work focussed on improving the dynamic load balancing for large-scale CFD/CAA
simulations. After identifying load balancing issues on HAWK for coupled CFD/CAA
simulations, several tests were performed to analyse the reason for apparently random CPU
timers, which appeared for large-scale runs. Several tests in cooperation with HPE were
performed on the full machine. The timers were obviously influenced by the power
management and turbo boost features of the CPU (see Figure 2 and Figure 3). A work around
was identified by not using the full core count available per CPU. Furthermore, the employed
dynamic load balancing approach in m-AIA has been enhanced by introducing a mesh
partitioning utilising adaptively higher levels of the hierarchical Cartesian mesh to achieve
higher parallel efficiencies at large-scale.

Figure 2: m-AIA coupled CFD/CAA chevron jet simulation: Wall time per time step for three selected

MPI ranks showing a performance variability over time on HAWK with 16384 MPI ranks in total.

Figure 3: m-AIA coupled CFD/CAA simulation: compute time over 1000 timesteps for all 8192 MPI ranks

relative to the average compute time on that MPI rank, showing process performance variability and
turbo boost events on complete processors.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 14 of 34

Strong scaling tests using the coupled CFD/CAA solvers in m-AIA for a benchmark with
1.2*10^9 CFD cells and 1.0*10^9 CAA degrees of freedom (DOF) are shown in Figure 4 and
Table 1 on the HAWK system, ranging from 32 nodes up to the maximum possible allocation
size of 4096 nodes, i.e., 524288 compute cores. The results show excellent parallel efficiency
of the m-AIA code, where a superlinear speedup is observed for the cases with more than 1024
nodes. This is probably due to the decreasing local problem size with the increasing core
number. The local problem size starts with a number of mesh cells on the order of O(100.000)
which drops to O(1000) cells for the largest core number used, with higher data localities that
reduce the overall memory access latencies. The conclusion that the memory access constitutes
the bottleneck of the simulations is substantiated by the similar number of time steps per second
that can be performed when using 128 MPI ranks with each 1 thread per compute node or just
64 MPI ranks with either 1 or 2 threads per MPI rank. The results show the efficient utilisation
of the whole HAWK system using the m-AIA code, e.g., the wall time to perform 100,000 time
steps can be reduced from about 80 hours on 32 nodes to less than half an hour on 4096 nodes.

Figure 4: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA.

128 procs/node speedup: procs/node, #threads

#cores DoF/core linear 128/1 64/1 64/2
4096 299520 1 1.00 1.00 1.00
8192 149760 2 1.93 1.96 1.96
16384 74880 4 3.76 3.84 3.83
32768 37440 8 7.47 7.51 7.57
65536 18720 16 14.68 15.26 15.42
131072 9360 32 34.15 33.87 37.56
262144 4680 64 89.54 81.53 87.70
524288 2340 128 188.94 184.55 195.64

Table 1: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 15 of 34

2.4 Alya
The Alya team has concentrated its efforts during the first year on testing and improving the
code scalability on both CPUs and GPUs. Moreover, the node level performance of the GPU
version of the code has been improved.
The code has been tested on 3 different machines: Marenostrum IV and MN CTE-Power at
BSC, and Polaris at Argonne Leadership Computing Facility. Moreover, we have recently
received computational resources at the Karolina EuroHPC supercomputer and are currently
starting tests on that machine too. Preliminary results are very similar to those obtained at
Polaris which also uses A100 Nvidia GPUs, but slightly slower since the Maximum clock
frequency is limited in Karolina to reduce energy consumption.

To test the scalability of the code we solve the Compressible Navier-Stokes equations for a
Taylor-Green Vortex problem at Reynolds number, Re = 1600, and Mach number, Ma = 0.1.
For the temporal discretisation an explicit 4th order Runge-Kutta scheme is used. For the spatial
discretisation third order hexahedral spectral elements are used. Meshes with N3 elements are
used, with N varying from 64 to 420. In a mesh with continuous third order hexahedral
elements, each element corresponds to 64 (43) nodes or Degrees of Freedom (DoF). Therefore,
the number of DoF vary from 7.19 to 2005 million.

Figure 5, presents the code scalability on Marenostrum IV, that uses Intel Xeon Platinum 8160
CPUs. Despite each node has a total of 48 cores, only 46 cores per node are used because it has
recently been discovered that Marenostrum IV suffers important scalability issues when the full
48 cores per node are used. The reasons for this behaviour are still not clear. The figure shows
that the code has an excellent weak and strong scalability on Marenostrum IV. For the strong
scalability to show degradation lower number of DoF per core would have been needed.
Efficiency is obtained by first calculating the Update Time (UT) for each run and then
normalising with respect to the UT on 46 cores with a load of 156k DoF per core. The Update
Time (UT) is defined as the computational time per time step and DoF. That is, the total
computational time for one-time step divided by the average load per core (identified as r in
Figure 5).

Figure 5: Parallel efficiency of Alya on Marenostrum IV for different problems sizes and loads varying

from 19500 to 156000 DoF per core.

Figure 6 shows Update Time per GPU of Alya on two different supercomputers using Nvidia
V100 and A100 GPUs. On the A100 GPU the Update Time remains bounded between 18 and

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 16 of 34

20 ns for loads ranging from 5 to 20 million DoF per GPU. The scalability starts to degrade for
loads of less 5Million DoF per GPU. On the V100 GPUs the scalability is similar to the one on
A100 GPUs but the performance also significantly degrades for high load per GPU due to the
lower amount of memory available on V100 GPUs.

Figure 6: Computational time per DoF, time step(ite) and GPU of on two different GPU machines Polaris
(Nvidia A100) and MN4-CTE-Powe (Nvidia V100) for meshes ranging from 1283 to 2653 elements (57 to

508 million DoF).

The Alya team participated in the ALCF (Argonne Leadership Computing Facility) INCITE
Hackathon (May 2023). Motivated by the hackathon mentors, the lead decided to take
advantage of CUDA Aware MPI comms to enhance the scalability of the code. To do so, they
had to discard the use of Unified Memory (adding “-gpu=managed” to compile flags) that is
not compatible with CUDA Aware MPI. The use of Unified Memory simplifies memory
management and makes coding easier. Moreover, before the hackathon, the version of the code
with Unified Memory was performing much better than without it.

Figure 7: Alya profiling with the Nvidia profiler.

Figure 7 shows results obtained with the Nvidia profiler for the Unified Memory version of
the code where one can see that the device to host and host to device memory copies take
approximately 1.5 milliseconds. With the optimised non-Unified Memory version, the time
for the memory copies reduces to less than one millisecond.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 17 of 34

GPUs DoF/GPU A100
old

A100
new

A100
ratio

V100
old

V100
new

V100
ratio

4 14266656 17.02 10.25 1.66 31.30 17.15 1.82
8 7133328 17.22 10.02 1.72 18.56 17.72 1.05
16 3566664 22.35 10.60 2.11 21.11 19.46 1.08
32 1783332 31.69 14.80 2.14

Table 2: Comparison of Alya computational time [ns] per DoF, time step and GPU of on two different

GPU machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100) before and after the Hackathon.

Table 2 presents a Comparison of Alya computational time [ns] per DoF, time step and GPU
of on two different GPU machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100)
before and after the Hackathon. On the Nvidia A100 GPU there has been a significant (>1.66)
gain in performance for all four analysed loads. The scaling is nearly perfect up to 3.5 million
DoF per GPU. On the V100 GPU the gains are more modest except on the case with a high
load per GPU. Not using Unified Memory, a much better memory management is obtained
which eliminate de degradation of performance for high load per GPU which had been observed
earlier.

2.5 FLEW
As already mentioned in the introduction of this section software developers deal with three
main performance-oriented objectives:

1. parallelisation-oriented software design using algorithms that remain efficient when
parallelised.

2. implementation “exposing” the parallel potential as much as possible.
3. choice of suitable programming paradigms to best use the available hardware.

FLEW uses explicit Runge-Kutta schemes for the temporal evolution and explicit finite-
difference schemes for the spatial discretisation, both very suitable from a parallel programming
perspective.

Within the scope of EXCELLERAT P2, we refer first of all to architectures available in
EuroHPC resources during the project timeline. CPU-wise, these are mostly x86-64 machines
but also some ARM platforms. From the point of view of accelerators, these are NVIDIA GPUs
of different generations (Ampere, Hopper) and AMD GPUs (Instinct). In particular as regards
FLEW, according to the DoA of the project, the development of a code capable of efficiently
exploiting both NVIDIA GPUs and AMD GPUs is envisaged. From the point of view of the
choice of paradigms, the most important characteristics to favour in the choice are:

• possibility of achieving high level performance, in reference to the peak performance
of the hardware but also to the performance actually achievable in similar cases
according to existing literature;

• create a code that remains maintainable over time, i.e., susceptible to future algorithmic
evolutions, limiting the corresponding development effort on the part of the developer
community;

• create a code that is portable and/or has generality with respect to future expansions of
the calculation backends.

Unfortunately, at the current moment, there is no paradigm that allows you to achieve all three
of these objectives. More precisely, there is no paradigm implemented in a sufficiently
advanced way to achieve the objectives. To have portability in the strict sense, a standardised
paradigm is necessary. The choice of OpenCL would require a restructuring of the total code,
a significant burden that would make future algorithmic evolution difficult, as well as

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 18 of 34

essentially abandoning the Fortran language. The choice of other standard paradigms such as
OpenMP and OpenACC is potentially valid, but clashes with the low/incomplete
implementation of paradigms for different accelerators. Unfortunately, the ideal compromise
between the three objectives requires interpreting the objective of code portability in an
extended way, i.e., adopting a multi-paradigm approach (instead of the portability in the strict
sense that would be obtained using a single paradigm). The multi-paradigm approach allows
you to achieve the optimal performance that vendor-specific paradigms allow you to achieve.
Secondly, the software can potentially support new paradigms by adding support for new
backends and thus achieving portability on different existing and non-existing architectures.
The challenge of creating a code that is maintainable and susceptible to future algorithmic
evolutions with a reasonable effort remains open.

The approach that we have decided to undertake in FLEW is therefore the multi-paradigm
approach which however involves a two-phase code development line (see Figure 8):
1. code development, for example with new algorithms, using a backend “master paradigm”.
2. transformation of the calculation part using different “secondary paradigms” starting from

the code of the main “paradigm”.

Figure 8: Development strategy: CUDA Fortran and translations.

CUDA Fortran was chosen as the main paradigm, capable of optimally exploiting NVIDIA
GPUs. The choice is due to three main reasons:

1. NVIDIA GPUs represent the computational core of most EuroHPC computing
architectures and are therefore a reasonable hardware reference for the development of
CoE software;

2. good readability of the CUDA Fortran code, thanks also to the cuf automatic kernel
directives, and in particular good ability to “expose parallelism”

3. adequate quality of the compiler update that the vendor guarantees to make adequate
use of its devices.

The first sub-paradigm is actually the traditional paradigm of code designed to run on a
traditional CPU. The choice not to have the CPU as the main paradigm derives from the fact of
preferring a parallelisation-oriented paradigm such as CUDA Fortran, compared to a generic
CPU-type paradigm. The calculation code for the CPU is then generated starting from CUDA
Fortran in order to guarantee that development always takes place in a parallel oriented manner.

To support AMD GPUs, the secondary paradigm developed is HIP/HIPFort. The difficulty of
supporting HIP for a Fortran code is notable because, unlike CUDA Fortran, HIPFort is not
able to compile calculation kernels in Fortran, but only to provide a connection infrastructure
(via interfaces and more) between code Fortran and kernels written in C. It is therefore a
question of managing, among other things, a massive transformation of the computing kernels
from CUDA Fortran to C.

Having a master paradigm means that all code developers can easily develop using CUDA
Fortran and then delegate the task of translating the code to a different phase and/or group of
people. For this process to work, a clear structural separation of the code is needed so that
different backends can be programmed separately and at different times. In this regard, software
architecture is crucial. The STREAmS community code (https://github.com/STREAmS-

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 19 of 34

CFD/STREAmS-2) is developed by the same partners that develop FLEW (Sapienza/CINECA)
and has important algorithmic similarities with FLEW. The architectural development of the
two codes therefore takes place conceptually simultaneously, but the development is taking
place at this stage mainly on STREAmS which is therefore currently in a more advanced stage.
From a structural point of view, STREAmS can be considered as a simplified platform
compared to FLEW for code design testing. The object structure of STREAmS is represented
in Figure 9.

Figure 9: STREAmS-2 object-oriented design which will be used in FLEW.

The sketched object architecture allows the FLEW code to be separated into four sections with
respect to the implemented equation and the supported computational backend:

1. Sections equation-independent and backend-independent

• object (Fortran derived type) : parameters
• object (Fortran derived type) : field

2. Sections equation-independent and backend-dependent
• object (Fortran derived type) : base_<backend>

3. Sections equation-dependent and backend-independent
• object (Fortran derived type) : <equation>/equation_base

4. Sections equation-dependent and backend-dependent
• object (Fortran derived type) : <equation>/equation_<backend>
• pure functions (Fortran module) : <equation>/kernel_<backend>

Excluding computational kernels, the components are implemented via Fortran derived types
in an object-oriented fashion where each derived type includes procedures as well as data
attributes. Kernels are instead implemented as pure functions which therefore take all the
variables they work on as arguments. This separation allows great versatility in the
implementation of kernels which can be implemented with relative ease for example in C.
Adding a new computational backend in this final FLEW design corresponds to creating objects
and functions of points 2) and 4) whereas 1) and 3) sections can be unchanged.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 20 of 34

Given the algorithmic similarity, albeit partial, between STREAmS and FLEW, FLEW could
not only inherit the object structure of STREAmS but even be unified with STREAmS. The
unification could be partial, in the sense of sharing some parts of code or related tools, or more
complete in the sense that the result could be a single code. The possibility of such unification
is still being studied. The unification between the codes can be helpful, also in terms of
development effort, but the risk of creating excessive code complexity as well as limiting the
optimisation of the calculation kernels must be carefully weighed.

The proposed approach is substantially valid if the transformation procedure of the main
paradigm into the secondary paradigms occurs with a reasonable effort. To make this easier,
the choice that has been made is to limit ourselves to a CUDA Fortran code that is programmed
efficiently but without particularly strong optimisations that would make the maintainability of
the code as well as the conversion to other paradigms difficult. This choice proved to be
adequate in STREAmS as the performances obtained are realistically close to those of the GPUs
used.

Figure 10 shows the planned backend which will be supported by FLEW, where CUDA Fortran
is the primary developed paradigm, CPU and HIP are the derived ones, and OpenMP is the
optional paradigm which will be attempted.

Figure 10: Planned backend supported by FLEW: main paradigm (CUDA Fortran), translated

paradigms (CPU, HIP), optional paradigms (OpenMP).

For paradigms such as CPU, the conversion from CUDA Fortran is conceptually quite easy and
includes the following main steps:

• removal of device attribute for memory used for computation
• removal of cuf directives and GPU synchronisations
• transformation of explicit (global) kernels into traditional loops
• cache oriented reordering of all loops
• removal of all asynchronous communication components, which are not considered

necessary to replicate in the CPU context as there are no CPU-GPU transfers involved

For paradigms such as HIP, the conversion requires significantly greater efforts. Among the
main steps we consider:

• transformation of device memory into pointers and allocations using HIPFort interfaces
• contextual creation of indexing maps to access device memory from C in a readable

way

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 21 of 34

• explicit kernel transformation with multi-layer structure: Fortran procedure, Fortran
interface for the wrapper, wrapper in C, kernel in C,

• transformation cuf kernel into explicit kernels and transformation as in the previous
point

• replacement of asynchronous parts and in CUDA Fortran library calls in HIP
equivalents

Further paradigms are currently being studied and in particular the OpenMP paradigm which,
being standard, could potentially provide considerable portability. This is a part of the
development not strictly required in this project as CUDA Fortran and HIP are able to run
optimally on NVIDIA and AMD GPUs, the reference architectures foreseen for FLEW in the
EXCELLERAT DoA. OpenMP is one of the paradigms favoured by Intel GPU compiler
implementations, which we believe are an important development to consider when developing
HPC code. The OpenMP paradigm can potentially be also tested as an alternative for other
GPUs, especially AMD GPUs.

As seen, the transformation of the code from the main paradigm requires several steps which,
for a code of a certain size, can be considerable. For this reason, an automatic (or semi-
automatic) conversion tool capable of generating the code for the other backends from the
CUDA Fortran backend is being developed. The transition from manual conversion to
automatic conversion (even if possibly with some manual input) makes the ordinary code
development path significantly more agile (see Figure 11). The tool is in Python language and
is designed to be extensible itself for the production of new backends in subsequent phases.

Figure 11: Development strategy using automatic translation.

All the activities described in this document are currently under development. At present, there
are therefore three main lines of development:
1. development of STREAmS (version 2) which, given the algorithmic similarity with FLEW,

can provide decisive indications for the choices to be made on FLEW.
2. development of FLEW by evolving the original code for algorithmic and physical validation

in test cases. A first version of the CPU code has been completed alongside a
preliminary (partial) version that supports NVIDIA GPU: these versions can be already
used for production runs.

3. development of the new FLEW rewritten in a modular, object-oriented and multiback-end
way according to a technological infrastructure similar to that of STREAmS, as
described in this document. In this context, a possible unification of STREAmS and
FLEW, also given that the developer community is the same, is being studied.

At the moment, intermediate results are only available for the first two points. Since these are
not results related to the final code (objective of the third point), all optimisation, porting and
performance results will be presented when the code in the final design is available, at the end
of the activity of point 3.

The activities described follow without deviations what was foreseen in the global GANTT of
Use Case 6. The completion and validation phase of the starting version of the FLEW code was
completed at M9 (see D2.14), and we are now proceeding (M9-M15) to rewriting/refactoring

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 22 of 34

the code according to the design described in this document. The actual porting will be the
subject of activities M14-M27, and the deployment/validation/benchmarking activities on
different EuroHPC clusters will be performed in a similar time window (M18-M32).

2.6 OpenFoam, ElmerFEM, Raysect, Mitsuba 2
The UL team focused this year on the field line tracing optimisation, since this is the first
simulation step of further-application case. The code L2G [1] developed at UL and ITER has
been optimised for better computational efficiency. The algorithmic improvements of the code
are:

• Octree space partitioning
• Bounding box partitioning of large meshes to decrease time of line triangle intersection

checks.

The parallelisation of field line tracing is also achieved by dividing the trace into multiple
smaller traces. The cases in the L2G module are run with 1 OpenMP thread by default.

A benchmark case, named Inres1 case was run for 1, 2, 4, 8 and 16 OpenMP threads. For
performance tests on huge meshes the target and shadow geometries from the Inres1 case were
remeshed (using the SMESH module in SALOME) to element sizes of approximately 10, 3, 2
and 1 mm. The last size resulted in a target mesh of 3046416 triangles and a shadow mesh of
25309694 triangles. This means that the algorithm launched 3046416 traces and in each step
each trace was checked for intersection with 25309694 triangles, yielding a number
25309694*3046416/1e9 = 77103.856756704 billion of total intersection checks (see Fig. 12
and Table 3) Of course, the usage of algorithmic improvements described earlier reduced the
number of checks. In table below a total execution time is given depending on the mesh size
(the multiplication of both target and shadow triangles gives number of intersection checks)
and number of threads.

Table 3: Wall clock time [s] depending on the mesh size and number of threads.

This specific test was conducted on HPC at Faculty of Mechanical engineering, University of
Ljubljana. Similar checks are underway on Vega HPC.

Figure 12 shows total execution times depending on the mesh size and number of threads used.
The results show that many threads execution speeds up field-line tracing on million size
meshes for a factor more than 2 with the use of 16 threads.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 23 of 34

Figure 12: A comparison of execution times for different mesh size (triangular mesh). The legend refers to

number of threads.

For L2G code the output meshes and results are stored in Med file format (based on HDF5
library), the standard binary file format for storing results in SALOME open source simulation
environment and used at UL extensively for pre and post processing. Next year, the UL work
in Task 3.1 will focus on optimisation of thermal modelling (OpenFOAM) and ray-tracing
(Raysect) codes.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 24 of 34

3 Task 3.3: Testing, Validation and Deployment

Contributors: E4, BSC, KTH, RWTH, CERFACS, DLR, CINECA, UL
In this section, we will provide an overview of the work conducted within the framework of
Task 3.3. It is essential to mention that due to project First Amendment (July, 2023), the start
of this task was rescheduled from Month 1 to Month 9. Therefore, in the present D3.1, only
activities relating to M9-M12 are reported.
The aim of this task is to focus on the testing and validation activities of various methodologies
and workflows applied to execute the use cases. This includes the development of automated
testing strategies and deployment processes, ensuring that the results can be replicated and
extended for broader applications. These tests will be consolidated into a testing platform
capable of assessing performance and accuracy across diverse architectural environments. The
successful execution of this task relies on close collaboration with application and
computational scientists to guarantee the effectiveness and efficiency of these advancements.
As the workflows comprise multiple components that may run on potentially diverse hardware,
the validation and benchmarking results will span from individual component assessments to
full-scale simulations and complete workflow rounds.
In summary, this task comprises three core aspects, revolving around a unified testing platform
serving the purposes of validation, deployment, and benchmarking. The specific definition and
execution of this testing platform, as well as the overall approach of Task 3.3, will largely
depend on the input and direction provided by CASTIEL 2 project managing the Coordination
and Support for National Competence Centres (NCC) and Centres of Excellence (CoE) on a
European Level Phase 2. Since Task 3.3 is inherently coupled with our collaboration with
CASTIEL 2, the activity is carried out in close coordination and, in particular, timelines and
main decisions should be agreed in the CASTIEL 2 context.
Over the past few months, CASTIEL 2 has conducted two surveys addressing the needs of
different CoEs to collect information useful to guide its coordination role. In particular, we
report and comment here the main results coming from the surveys which can be useful for
what concerns the present T3.3 context. Table of results are provided in Table 4, Table 5, and
Table 6.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 25 of 34

Table 4: EXCELLERAT P2 codes and availability: data from CASTIEL 2 survey.

We selected the most relevant information to highlight the most significant challenges in the
creation of the unified platform foreseen in T3.3. In particular, we discuss two main challenges:

1. Code availability, and in particular open-source issue
2. Platform architecture deployments

The first challenge is well described in Table 4 where we show the main information of
EXCELLERAT application codes highlighting three main points:

• Owner of code

• Code availability and license

• Terms of usage
Designing and implementing a unified platform is a clear challenge considering the availability
of the codes is very limited. Indeed, only two of the 7 scenarios (6 Use cases and 1 FA) are
based on publicly available codes. Two additional scenarios work with codes which will
become open-source during the project (one during 2023 and one at the end of the project). The
remaining scenarios deal with closed-source code, in some cases available only after individual
agreements.

Code History, Versions Owner Code & Licence URL Terms of Use

CODA
More than 20 years development
(TAU, Flucs, CODA)

CODA is jointly owned by
ONERA, DLR and Airbus.

proprietary, based on
individual agreement

No public access

AVBP
AVBP has been developped
since the end of the 90's at
CERFACS.

CERFACS
proprietary, based on
individual agreement

No anonymous access.

m-AIA
Development since more than 15
years

RWTH Not decided yet.
The code will go open source in
2023.

Not decided
yet.

Alya Developed since 2004. BSC
Available Source or
Software as a Service
licenses

https://gitlab.com/bsc-alya/alya,
https://bsc.es/research-
development/research-
areas/engineering-simulations/alya-
high-performance-computational

Free under
collaboration
agreement

Neko Developed since 2018. KTH Open Source (BSD)
https://gitlab.com/ExtremeFLOW/n
eko , https://neko.cfd/

No
Restrictions

FLEW Developed since 2011.
Sapienza University of
Rome

Proprietary, based on
individual agreement
(until it will be open
source).

The code will go open source
before the end of the project.

Not decided
yet

OpenFoam/
Raysect

Developed since 2014
OpenCFD Ltd
(OpenFOAM), Alex
Meakins (Raysect)

Open Source

https://github.com/raysect
https://develop.openfoam.com/De
velopment/openfoam/-
/wikis/precompiled

No restrictions

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 26 of 34

Table 5: EXCELLERAT P2 codes and deployment on EuroHPC systems: data from CASTIEL 2 survey.

The platform diversity against EXCELLERAT application software is summarised in Table 5.
In particular, we consider 17 different computing architectures corresponding to different
partitions of EuroHPC machines. For each computing unit and each code, we collected two
main information related to deployment:

• Status: which may be Productive, Work-in-progress or Not yet done

• Planned: which may be Yes, No, Maybe
Despite at this stage, the results are still not completely clean (further collection will be
performed in the next months) it is already possible to extract a general information. Only one
code declares the plan to be able to deploy the code to each EuroHPC partition. As for the other
codes, there is a significant variability in the number and type of target partitions. As such, a
possible unified platform mandatorily inherits this kind of limitations. However, even

Di
sc

ov
er

er

De
uc

al
io

n

State (Productive,
Work in Progress,
Not (yet) done

Planned (Yes,
No, Maybe) LU

M
I-C

LU
M

I-G

V.
 C

PU

V.
 G

PU

K.
 C

PU

K.
GP

U

M
. C

PU

 M
. G

PU

 M
. F

PG
A

L.
 B

oo
st

er
*

L.
 D

at
a

Ce
nt

ric

M
5

 G
PP

M
5

AC
C

N
GT

 A
CC

N
GT

 G
PP

CODA
State N N N N N N N N
Planned Y Y Y Y Y Y Y Y
AVBP
State P P P P
Planned Y N Y N Y Y N Y Y
m-AIA
State N N W N W N W W N N N N N N N N N
Planned
Alya
State N P N
Planned M
Neko
State P P N N N N N N N N P N N N N N N
Planned Y Y Y Y Y Y Y Y Y Y Y Y Y Y
FLEW
State N W N N N P N N N N P+W N N N
Planned Y Y N Y N Y N N Y N Y Y N N Y M M
OpenFoam/Raysect
State W W P W W W W
Planned Y Y Y

Lu
m

i

Ve
ga

Ka
ro

lin
a

M
el

uX
in

a

Le
on

ar
do

M
ar

eN
os

tr
um

 5

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 27 of 34

supporting the planned architectures is a significant challenge even considering different types
of involved heterogeneous accelerations.
Regarding the timeline of the planned activities, Table 6 shows that some applications already
started deployment and production to different architectures. The need for resources is clearly
an additional issue which is, however, not directly related to the present T3.3 task. The second
part of the survey (Questions 5-8) specifically deal with feedback on the first indications coming
from CASTIEL 2 meetings. In particular, CASTIEL 2 is focusing on the possibility to establish
a centralised EuroHPC-driven source code repository. The repository could be based on GitLab
technology and the GitLab runner might be an adequate platform which can be used for CI/CD.
In this context, GitLab runner could be part or represent itself, as the unified platform used in
T3.3. However, as discussed from Table 4 data, there is the issue of managing not open-source
codes which can be contrasting with respect to centralised source code repository. It's worth
noting that, at present, only one of the use cases is open source, and some partners intend to
keep their code proprietary. CASTIEL 2 leans toward an open-source approach, but we need to
find a consensus on this matter.
In our roadmap planning, our approach is to track CASTIEL’s lead. Should CASTIEL offer a
comprehensive and inclusive framework, we will harmonise our efforts with it. However, if
CASTIEL’s framework is not all-encompassing, our task will involve a detailed evaluation of
all projects and the establishment of guidelines for the documentation required for validation,
deployment, and benchmarking.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 28 of 34

Table 6: EXCELLERAT P2 deployment status and requirements: data from CASTIEL 2 survey.

ID Question Answer

1
Which access calls have you used?
(Benchmarking, Development, Regular,
Extreme)

Benchmarking (5); Development (1); Regular (2).

2
How many different codes were already
executed successfully on at least one
EuroHPC system?

8 codes successfully executed.

3

Are the resources requested and
assigned are sufficient to reach the
objectives of your CoE?
Likely the resources will be sufficient for
the first year. Can you already do a
projection for the following
years?

Mostly all code owners state that resources are sufficient for the first year (2023), where the code is
tested and benchmarked. But more resources will be needed from 2024 till the end of the project.
BSC (Alya) estimates for next years: 2024 3M Core Hours, 2025 5MCore Hours, 2026 9M Core
Hours. CINECA (Flew) estimates that about 1M GPU hours/year will be sufficient. 3 out of 7 code
owners could not make any predictions.

4

Please report briefly about the
experiences made on the EuroHPC
systems?
How was the application process? Did
you face any difficulties getting your
codes to run? Did you get
(technical) support by EuroHPC hosting
sites if needed?

The experience is overall positive. Application is smooth but bit too long to be granted access (over
a month). Some technical support from Hosting Sites was given. One code owner reported
different access procedures and conditions to each system though soi t would be great to have a
unique profile for EuroHPC users.

5

Can you please provide your feedback
regarding the need of having a common
GitLab and
give some preliminary information about
what you would push to such repository?
E.g. share
the actual code, deployable software
artefacts, binaries, deployment recipes,
...

All have GitLab or Github repositories, one code owner has already GitLab runners to run the CICD
pipelines. If required by Castiel2 we are available to share the source code and deployment recipes,
as docker/singularity images of the protected software (2 or 3 application) and opensource
packages (all).

6
Can you start deploying codes on a
EuroHPC system in the next weeks using
GitLab Runner?

yes (4), possibly testing the software stack beforehand; not (2)

7

What will be your first code to share with
the common GitLab server? Can you
provide a timeline? (describe some
technical limitations that you might face)

The non-opensource code cannot be uploaded as it is to the GitLab server without some
information on the access policy. The opensource ones can be upload anytime. One code owner still
needs to complete the development of the code (M18-M24), then will be ready to share code.

8 Do you have further feedback to us?

The GITLAB/CI requirement in this document seems to imply its coming from us whereas it was not
on the original proposal. We can adapt to this situation but a clarification seems in order. Also
looking at the different EuroHPC hosting sites, support for GitLab CI and/or containers seems very
heterogeneous. A panorama of support per system would be appreciated.
It would be good to have the contact details to the technical support of the common GitLab server
or the EuroHPC system.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 29 of 34

4 Task 3.4: Exascale Engineering

Contributors: CERFACS, KTH, RWTH, BSC, DLR, CINECA.

This task is focused on the specific developments required to extend the simulations workflows
from Task 3.1 to achieve the large-scale readiness required in exascale simulations. Achieving
exascale simulations is challenging not only from the software point of view, but also from the
hardware operation, as large number of resources need to be allocated to a single application.
In fact, ensuring high efficiency and performance in large-scale workflows requires specific
directives on the bash scripts and use of resources, so the applications can be distributed over
large number of computing nodes. These simulations require the direct interaction of the
application’s user/developer, the HPC centre’s operation and software support staff as well as
the HPC centre’s on-site staff to make ensure an efficient execution of the run.

4.1 CODA
During the reporting period one main tasks was carried out for the FlowSimulator framework
used by CODA: Based on an initial analysis, we improved FlowSimulator’s support for very
large meshes and very large core counts. We identified and solved multiple issues in the mesh
partitioning stage, which consists of a fast pre-partitioner based on recursive coordinate
bisection (RCB) and a following graph-partitioner such as ParMETIS. In the FlowSimulator
implementation of an RCB we solved an integer overflow and an out-of-memory error for very
large meshes (more than 1 billion elements). In the graph-partitioner we solved an out-of-
memory error in the graph-extraction phase for very large core counts. In combination with
other improvements, we were able to overcome a previous scalability limit at about 8,192 MPI
processes that limited the execution of simulations with more than 32,768 cores on the DLR
production systems CARA and CARO. We are now able to run successfully on 131,072 cores
(the largest partition of the CARO system). In addition to increasing the scalability of
FlowSimulator, the pre-processing stage was also drastically accelerated.

4.2 AVBP

Efforts to bring AVBP to exascale-ready performance have focused on the portability of the
code for AMD GPUs. Indeed, at the moment the largest clusters in EuroHPC and in the world
are equipped with AMD Mi250 GPUs.
The code supports GPU acceleration using the OpenACC framework. Therefore, compatibility
for now remains limited to HPE systems equipped with the CRAY compiler suite. Thankfully,
we have access to two of those systems in EUROPE, the ADASTRA Tier 1 system from
GENCI/CINES in Montpellier FRANCE and LUMI G at CSC Finland.
Portability of the current code build is on-going and an AMD GPU capable code prototype for
non-reactive flows exists. Performance on a small test case shows that good scaling is possible
with 1M elements per GPU (see Figure 13 below).
The extension to reactive flows, requires some code refactoring being undertaken by the CFD
team at CERFACS outside of the EXCELLERAT project and is expected to be completed by

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 30 of 34

February 2024. Tests could not be performed in LUMI G as the CRAY compiler version was
too old at the time of access but has been updated since and will be tried in Q1 2024.

Figure 13: Strong scaling of AVBP on the ADASTRA system using 4 Mi250 per node. Nonreactive

windfarm case.

Additionally, a benchmark access has been requested to test AVBP on LEONARDO Booster,
ensuring that the refactoring of the code does not impact NVIDIA GPU performance.

4.3 m-AIA
The m-AIA code has been thoroughly tested on the HAWK supercomputer at HLRS,
deployment on the Vega EuroHPC system took place and benchmarking is currently under
progress. Computational resources on the Karolina and MeluXina EuroHPC supercomputers
have been granted as well and code deployment and testing will start once the access to the
systems is provided.
The strong scalability of a realistic coupled CFD/CAA chevron jet application with m-AIA on
HAWK is shown in Figure 14. The predicted flow field and the acoustic field for a baseline
nozzle without chevrons is visualised in Figure 15. With about 300 million CFD cells and
1*10^9 CAA DoF this setup corresponds to a smaller scale run according to the exascale
execution profile defined in WP2 for UC-3. As evident the code shows excellent scalability
when going from 2048 up to 262144 MPI processes, i.e., the maximum allocation size on
HAWK, achieving about 86 simulation timesteps per second compared to 0.68 for the baseline.

Figure 14: Strong scaling for a coupled CFD/CAA chevron jet application with m-AIA.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 31 of 34

Figure 15: m-AIA coupled CFD/CAA simulation: baseline nozzle without chevrons showing flow

structures (bottom) and the acoustic field close to the nozzle (top).

4.4 Alya
CFD users of supercomputers usually resort to rule-of-thumb methods to select the number of
subdomains (partitions) when relying on MPI-based parallelisation. One common approach is
to set a minimum number of elements or cells per subdomain, under which the parallel
efficiency of the code is “known” to fall below a subjective level, say 80%. The situation is
even worse when the user is not aware of the best practice for a given code and a huge number
of resources can thus be wasted. In a previous work [2], we have developed a workflow to
ensure a target communication efficiency, as shown in Figure 16.

Figure 16: Optimizing the resources. Workflow for elastic computing of CFD simulations, involving

different codes and libraries: Alya (CFD), TALP (efficiency measures) and COMPSs (elastic computing).

The workflow ensures an elastic computing methodology that adapts at runtime the resources
allocated to a simulation automatically. The criterion to control the required resources is based
on a runtime measure of the communication efficiency of the execution. According to some
analytical estimates, the resources are then expanded or reduced to fulfil this criterion and
eventually execute an efficient simulation. The methodology was based on the CFD code Alya
together with a runtime library TALP to measure performance metrics, and finally COMPSs to
orchestrate the workflow and interact with SLURM workload manager.
The work proposed here follows a different strategy, although the main objectives are
maintained, that is to ensure a parallel efficient simulation. The strategy is now based on DMR
runtime, which handles the MPI communicator and oversees expanding or reducing the

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 32 of 34

resources. In this new approach, TALP is now integrated in DMR library [3,4], thus simplifying
the interactions of the CFD code Alya and the computing environment.
During this period, we have worked on the interfacing of DMR with Fortran language, as DMR
which was originally written in C. A mini-app reproducing the workflow of Alya has been
finalised and tested. The library together with the miniapp have been containerised and can be
found here [5].
Task 3.4 has several objectives, one of which is to focus on achieving optimal efficiency and
performance in large-scale workflows. The proposed flexible workflow is designed to
dynamically manage parallel efficiency during runtime by selecting the appropriate resources
based on metrics such as communication efficiency and load balance. Predicting the efficiency
of a simulation beforehand is challenging, primarily because strong scalabilities are typically
evaluated relative to a baseline. If the baseline is already in an unfavourable state, this approach
can yield highly inaccurate results. Furthermore, a priori strong scalability tests fail to provide
insights into how parallel efficiency deteriorates. Parallel efficiency is affected by two key
factors: load balance and communication efficiency, each of which can be addressed using
distinct methodologies. Load balance issues can be rectified through redistribution or the
utilisation of runtime mechanisms at the node level, such as DLB. On the other hand,
communication efficiency can be enhanced through the strategy proposed here, which involves
resource control, improved scheduling, or better repartitioning strategies, among other
techniques.
The task description specifies that “These simulations require the direct interaction of the
application’s user/developer, the HPC centre’s operation and software support staff as well as
the HPC centre’s on-site staff”. Specifically, the work on malleability requires active
cooperation between the CFD code developer (Alya) and the runtime developer (DMR), and
their interactions with the support team, especially since DMR interfaces closely with SLURM.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 33 of 34

5 Conclusion
Advances in the different codes to satisfy the needs of the use cases have been presented.
Scalability has been tested on CPU and GPU supercomputers and improvement have been
implemented. Advances in the porting and optimisation for GPUs has been presented. CINECA
and URMLS are using a multi-paradigm approach for their code FLEW that will allow them to
run on a wide range of hardware. Most of the teams are advancing satisfactorily in WP3. The
NEKO team has focused more on their use case (WP2) and on the activities in WP4 during the
first year of the project. The algorithmic and computational developments of the different
methodologies defined to execute their use case are now clearer and they will increase their
dedication to WP3 during the following months. Since we still have 3 more years, we believe
that there is currently no risk for the correct completion of the proposed activities for NEKO.

Task 3.1 focuses on optimising the computational efficiency of the simulation methodologies
employed in the use case at inter- and intra-node levels. As mentioned above, some teams have
worked on evaluating and improving the parallelisation strategy. Others have worked on
improving the processing on GPU accelerators or developing approaches that can handle
multiple paradigms.

Task 3.3 comprises three core aspects, revolving around a unified testing platform serving the
purposes of validation, deployment, and benchmarking. The specific definition and execution
of this testing platform, as well as the overall approach of Task 3.3, will largely depend on the
input and direction provided by CASTIEL 2 project managing the Coordination and Support
for National Competence Centres and Centres of Excellence on a European Level Phase 2.

Task 3.4 is focused on the specific developments required to extend the simulations workflows
from Task 3.1 to achieve the large-scale readiness required in exascale simulations. The CODA
team has focused on mesh partitioning within their FlowSimulator framework. The AVBP team
has worked on the scalability for AMD GPUs. The m-AIA team has analysed the strong
scalability of a realistic coupled CFD/CAA chevron jet application. The Alya team has worked
with an elastic computing methodology that adapts the resources allocated to a simulation
automatically at runtime.

Public
Copyright © 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 34 of 34

6 References
[1] G. Simic, S. Carpentier, R.A. Pitts, L. Kos, F. Fernandez, M. Brank “Enhancements and
applications of the SMITER magnetic field line tracing and heat load mapping code package,”
presented at the 30th IEEE Symposium on Fusion Engineering, Oxford, UK, 7 2023.
[2] Houzeaux, G. [et al.]. Dynamic resource allocation for efficient parallel CFD simulations.
"Computers and fluids", 2022, vol. 245, article 105577, p. 1-13.
[3] DMR library: S. Iserte, R. Mayo, E. S. Quintana-Ortí and A. J. Peña, "DMRlib: Easy-Coding
and Efficient Resource Management for Job Malleability," in IEEE Transactions on Computers,
vol. 70, no. 9, pp. 1443-1457, 1 Sept. 2021, doi: 10.1109/TC.2020.3022933.
[4] DMR library repository: https://gitlab.bsc.es/siserte/dmr/-/tree/alya?ref_type=heads
[5] Fortran miniapp using DMR: https://gitlab.bsc.es/siserte/sleepmalleablefortran.
[6] J. Mohnke and M. Wagner, “A Look at Performance and Scalability of the GPU Accelerated
Sparse Linear System Solver Spliss”, In Euro-Par 2023: Parallel Processing. LNCS, vol 14100,
2023. https://doi.org/10.1007/978-3-031-39698-4_43

https://gitlab.bsc.es/siserte/sleepmalleablefortran
https://doi.org/10.1007/978-3-031-39698-4_43

	1 Introduction
	2 Task 3.1 Performance & Efficiency Engineering
	2.1 CODA
	2.2 AVBP
	2.3 m-AIA
	2.4 Alya
	2.5 FLEW
	2.6 OpenFoam, ElmerFEM, Raysect, Mitsuba 2

	3 Task 3.3: Testing, Validation and Deployment
	4 Task 3.4: Exascale Engineering
	4.1 CODA
	4.2 AVBP
	4.3 m-AIA
	4.4 Alya

	5 Conclusion
	6 References

