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Executive Summary 
The scalability of CODA was analysed on the largest available partition of DLR’s main 
production system. The performance of the code was tested on various upcoming CPU 
architectures and on Nvidia A100 GPUs. 
RWTH significantly improved the performance and parallel efficiency for large-scale 
multiphysics simulations with the code m-AIA. The code was scaled up to utilise the full 
HAWK HPC system of about 500,000 compute cores. 
BSC tested Alya on 3 different machines: MareNostrum IV and MN3 CTE-Power at BSC, and 
Polaris at Argonne Leadership Computing Facility. Moreover, it has recently received 
computational resources at the Karolina EuroHPC supercomputer and is currently starting tests 
on that machine too. Better memory management has allowed to significantly improve 
scalability on GPUs. 
CINECA and URMLS are using a multi-paradigm approach for their code FLEW which 
involves a two-phase code development line. Code development, for example with new 
algorithms, uses a backend “master paradigm” based on CUDA Fortran. This main code is then 
transformed to “secondary paradigms” using automatic translations in house developed tools.  
The UL team focused on the field line tracing optimisation. The code L2G has been optimised 
for better computational efficiency. The algorithmic improvements of the code are octree space 
partitioning and bounding box partitioning of large meshes to decrease time of line triangle 
intersection checks. 
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1  Introduction 
Work package three is intended to support all the algorithmic and computational developments 
of the different methodologies defined to execute the use cases. It is focused on the appropriate 
use of software and hardware so the use cases can be executed with exascale workflows. In the 
context of heterogeneous systems, the best mapping of algorithms and architectures will be 
analysed in detail, considering both computing time and energy costs. The research and 
development carried out in this work package will be crystallised into exascale-type workflows 
for the reference applications. It includes code developments and optimisations of the 
simulation elements to exploit all levels of parallelism from heterogeneous HPC systems, and 
testing on emerging technologies and cooperation with vendors for co-design. Considering the 
diversity of use cases in terms of computational methods, discretisation strategies, HPC 
algorithms and simulation workflows, the activities are grouped into four tasks.  
 
This document reports advances on Exascale enabling methodologies for all codes in the 
EXCELLERAT P2 project. The report includes advances in Tasks 3.1, 3.3 and 3.4 as 
established in the grant agreement. Task 3.2 is omitted since it has started recently (M6) and it 
is not included in the grant agreement. The first task focuses on the optimisation of the 
computational efficiency of the simulation methodologies employed in the use case at inter- 
and intra-node levels. Advances in code scalability, code optimisation and porting to GPU are 
reported. For Task 3.3 progress on Testing, Validation and Deployment is presented. Task 3.4 
on Exascale Engineering deals with the specific developments required to extend the 
simulations workflows from Task 3.1 to achieve the large-scale readiness required in exascale 
simulations. 
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2 Task 3.1 Performance & Efficiency Engineering 
Contributors: BSC, KTH, RWTH, CERFACS, DLR, CINECA, UL 
 
This task is focused on the optimisation of the computational efficiency of the simulation 
methodologies employed in the use case at inter- and intra-node levels. It includes the 
combination of different parallelisation strategies based on distributed and shared memory, 
stream processing on GPU accelerators and efficient usage of hierarchical memory systems. 
Load balancing and communication/synchronisation reduction will be conducted in 
multiphysics applications and workflows including data-driven methods with Artificial 
Intelligence and multi-disciplinary analysis and optimisation. Advanced features of MPI such 
as non-blocking collectives, fault tolerance and remote memory access will be considered for 
some use cases. Finally, specific algorithmic modifications and communication strategies will 
be explored in the workflows and mapped to the supercomputing architectures. Optimisations 
considering both the algorithmic design and the implementation strategy such as energy 
efficiency and performance portability will be pursued.  
 
 
The trend of HPC architectures in recent years and in particular the increasingly pervasive 
presence of accelerated architectures represents a great opportunity for achieving simulation 
objectives of great impact on both research and engineering application. To seize these 
opportunities, however, it is necessary to have software capable of adequately exploiting the 
hardware resources available. In this sense, the traditional approach to programming, which 
sees the compiler and the operating system as capable of providing a simple abstraction of the 
hardware to the developer, is in crisis. In HPC, software architects and developers are supposed 
to have a substantial knowledge of target hardware and program from that perspective using 
the adequate programming paradigms. 
 
In a nutshell, this type of interaction can be framed within three main performance-oriented 
objectives: 

1. parallelisation-oriented software design starting from the choice of algorithms that are 
or remain particularly efficient if parallelised; 

2. implementation of algorithms “exposing” the parallel potential as much as possible; 
3. choice of suitable programming paradigms to best use the available hardware. 

 
From the point of view 1, particularly in the field of Computational fluid dynamics (CFD), the 
issues have been the subject of reflection for decades now, even if the balances of the parameters 
in the field are constantly evolving and can lead to changing conclusions. For example, an 
implicit algorithm for temporal evolution allows the use of a larger integration step, but the 
possible parallelisation methods are less efficient. On the contrary, an explicit algorithm, 
penalised by a very limited time step, can however be overall better due to its optimal versatility 
from a parallel calculation perspective. 
 
From the point of view 2, it is necessary to remember that the same algorithm can be 
implemented in different ways and these implementation choices can significantly affect the 
compiler's ability to translate the source into efficient and truly parallel machine code. The 
conservative finite difference schemes used in FLEW can be implemented in a more compact, 
more efficient way in serial optics, or in a more extensive way, which however turns out to be 
more efficient in parallel optics. 
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What is expressed in points 1 and 2 strongly depends on the particular type of hardware or 
generation of hardware considered, but there are principles to be respected that are generally 
valid from the perspective of the current most widespread HPC architectures. From the point 
of view 3, however, the adaptation of the code requires, in addition to a very high commitment, 
adaptability over time to the different parallel programming paradigms which can be 
substantially different. We distinguish four types of paradigms: 

• vendor-specific: such as CUDA for NVIDIA GPUs or HIP for AMD GPUs 
• standardised: such as OpenCL, OpenMP, OpenACC, SYCL 
• intrinsic of the languages: C++ STL, Fortran do concurrent 
• external: such as, for example, Legion, Kokkos, Raja 

Each paradigm has advantages and disadvantages in terms of performance, maintainability, 
readability, portability and other relevant characteristics of the software that can be produced. 
Choosing one paradigm over another depends on the specific objectives of a certain porting 
activity. 
 
 
2.1 CODA 
During the reporting period three main tasks were carried out for CODA, the FlowSimulator 
framework, and the sparse linear systems solver Spliss that is used by CODA: First, we assessed 
the baseline scalability of CODA and FlowSimulator on the largest available partition of DLR’s 
main production system CARA with the NASA common research model in a strong and weak 
scaling scenario. Second, we compared the performance of CODA on various upcoming CPU 
architectures. Third, CODA with Spliss running on GPUs was evaluated on the Nvidia A100 
architecture and the performance was compared to the DLR production systems. 
 
First, we focused on evaluating the scalability of CODA on CARA with Use Case UC-1. CARA 
is a CPU system based on the AMD Naples architecture. The use case solves the Reynolds-
averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras turbulence model in its 
negative form (SA-neg). The use case runs on an unstructured mesh from the NASA Common 
Research Model (CRM) with about 5 million points and 24 million volume elements. The mesh 
is a rather small mesh, which has been chosen for a strong scalability analysis (fixed problem 
size) of CODA at currently available HPC systems. Production meshes are typically at least 10 
times larger and accordingly achieve comparable efficiency on much higher scales. For the 
weak scalability analysis (fixed workload per core), we use different mesh sizes from the CRM 
mesh family ranging from 3 to 192 million elements and solve the use case with an according 
number of cores. CODA achieves about 61% parallel efficiency on the largest available 
partition on CARA with 512 nodes and 32,768 cores in the strong scaling scenario. In the weak 
scaling scenario, a parallel efficiency of 74% was achieved on 32,768 cores. 
Second, in a continuous effort to test and evaluate CODA and FlowSimulator on new CPU 
architectures, so far, we have evaluated the AMD Zen1, Zen2, Zen3 and Zen4 architecture, the 
Intel Icelake architecture and the ARM-based Graviton2 and Graviton3 architecture. For the 
evaluation we use standardised benchmarks and a containerised version of CODA and 
FlowSimulator including the use case on resources in the Germany-based AWS cloud by means 
of a cooperation with Amazon. These measurements allow us to adapt CODA to new 
architectures during the early-access phase and evaluate which systems offer best performance 
ahead of deployment to new full-scale HPC systems and provide valuable insight for designing 
DLR’s own future HPC systems. 
Third, we evaluated the entire workflow with Spliss running on GPUs. A significant part in 
computational fluid dynamics (CFD) simulations is the solving of large sparse systems of linear 
equations resulting from implicit time integration of the Reynolds-averaged Navier-Stokes 
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(RANS) equations, which are computed via the sparse linear systems solver Spliss. Next to 
leveraging a wide range of available HPC technologies such as hybrid CPU parallelisation, 
Spliss allows offloading the computationally intensive linear solver to GPU accelerators, while 
at the same time hiding this complexity from the CFD solver. We used Spliss to evaluate the 
entire workflow on a GPU system, whereas FlowSimulator and CODA are executed on the 
CPU part and the linear solver on GPUs. When comparing the CPU system CARO (AMD 
Rome) and the Nvidia A100 GPU system Juwels Booster at Jülich Supercomuting Center, the 
Use Case UC-1 achieves a speedup of up to 8.4 in a node-wise comparison and a speedup up 
to 1.9 in a power-equated comparison. The improvements made to establish multi-GPU 
capabilities for the Spliss solver allowing for efficient and scalable usage of large GPU systems 
and an evaluation of performance and scalability on CPU and GPU systems were published 
recently [6]. With these improvements CODA is able to support European Nvidia-based GPU 
systems such as LEONARDO or MareNostrum 5. The support for AMD-based GPU systems 
such as LUMI-G is currently evaluated.  
 

2.2 AVBP 
Use case UC2 (hydrogen combustion) workflows requires two main parallel components on 
the road to exascale. First, an exascale-ready AVBP. This is handled in Task 3.4 with the 
portability of the code for AMD GPUs.  Performance optimisation and efficiency of the code 
will be addressed in the next phases. Second, a highly parallel and efficient mesh adaptation 
component. With this in mind, the first period of EXCELLERAT 2 has focused on the 
robustness and reproducibility of the parallel mesh refinement library TREEADAPT. First, 
developed in the EXCELLERAT 1, it has already been used up to 8192 cores to generate 2B 
element meshes. However, it was soon discovered that results were not reproducible due to 
parallel effects in PARMETIS and other round-off errors. We have just recently published an 
alpha version of TREEADAPT (version 0.8.1) that is reproducible and usable up to 2048 cores. 
Further work is expected to improve the mpi core capabilities and use the hierarchical 
partitioning capabilities embedded in TREEADAPT.  
In parallel, we have been testing AVBP on JUWELS Booster (A100-40G) and other NVIDIA 
GPU clusters (V100-16G) to ensure the performance of the code. Figure 1 shows the scalability 
of the AVBP code on NVIDIA architectures for a 1B element mesh reactive Large Eddy 
Simulation (LES).  Scalability up to 1024 GPUs is confirmed and performance between V100 
and A100 almost doubles for low GPU counts. The difference in high GPU counts is lower as 
the data per GPU is not sufficient for the faster A100.  H100 tests were performed by NVIDIA 
and suggests another x2 acceleration per GPU at least, but could not be confirmed 
independently yet. We will test the code on Grace Hopper APU in the first quarter of 2024.   
 

 
Figure 1: Scalability of the AVBP code on NVIDIA V100 and A100. 
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2.3 m-AIA 
During the first project year RWTH significantly improved the performance and parallel 
efficiency for large-scale multiphysics simulations with the code m-AIA. Repeated testing of 
an aeroacoustics application that was scaled up to utilise the full HAWK HPC system of about 
500,000 compute cores allowed the identification of performance issues which were not visible 
for smaller scale runs or less complex simulation setups. For example, a critical issue related to 
a specific inter-process communication was discovered. Appropriate changes were introduced 
into the critical part of the communication modules in m-AIA, which eliminated the observed 
performance issues at large scale. 
Other work focussed on improving the dynamic load balancing for large-scale CFD/CAA 
simulations. After identifying load balancing issues on HAWK for coupled CFD/CAA 
simulations, several tests were performed to analyse the reason for apparently random CPU 
timers, which appeared for large-scale runs. Several tests in cooperation with HPE were 
performed on the full machine. The timers were obviously influenced by the power 
management and turbo boost features of the CPU (see Figure 2 and Figure 3). A work around 
was identified by not using the full core count available per CPU. Furthermore, the employed 
dynamic load balancing approach in m-AIA has been enhanced by introducing a mesh 
partitioning utilising adaptively higher levels of the hierarchical Cartesian mesh to achieve 
higher parallel efficiencies at large-scale. 

 
Figure 2: m-AIA coupled CFD/CAA chevron jet simulation: Wall time per time step for three selected 

MPI ranks showing a performance variability over time on HAWK with 16384 MPI ranks in total. 

 
 

 
Figure 3: m-AIA coupled CFD/CAA simulation: compute time over 1000 timesteps for all 8192 MPI ranks 

relative to the average compute time on that MPI rank, showing process performance variability and 
turbo boost events on complete processors. 
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Strong scaling tests using the coupled CFD/CAA solvers in m-AIA for a benchmark with 
1.2*10^9 CFD cells and 1.0*10^9 CAA degrees of freedom (DOF) are shown in Figure 4 and 
Table 1 on the HAWK system, ranging from 32 nodes up to the maximum possible allocation 
size of 4096 nodes, i.e., 524288 compute cores. The results show excellent parallel efficiency 
of the m-AIA code, where a superlinear speedup is observed for the cases with more than 1024 
nodes. This is probably due to the decreasing local problem size with the increasing core 
number. The local problem size starts with a number of mesh cells on the order of O(100.000) 
which drops to O(1000) cells for the largest core number used, with higher data localities that 
reduce the overall memory access latencies. The conclusion that the memory access constitutes 
the bottleneck of the simulations is substantiated by the similar number of time steps per second 
that can be performed when using 128 MPI ranks with each 1 thread per compute node or just 
64 MPI ranks with either 1 or 2 threads per MPI rank. The results show the efficient utilisation 
of the whole HAWK system using the m-AIA code, e.g., the wall time to perform 100,000 time 
steps can be reduced from about 80 hours on 32 nodes to less than half an hour on 4096 nodes. 
 

 
Figure 4: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA. 

 
128 procs/node speedup: procs/node, #threads 

#cores DoF/core linear 128/1 64/1 64/2 
4096 299520 1 1.00 1.00 1.00 
8192 149760 2 1.93 1.96 1.96 
16384 74880 4 3.76 3.84 3.83 
32768 37440 8 7.47 7.51 7.57 
65536 18720 16 14.68 15.26 15.42 
131072 9360 32 34.15 33.87 37.56 
262144 4680 64 89.54 81.53 87.70 
524288 2340 128 188.94 184.55 195.64 

Table 1: Strong scaling on HAWK for a coupled CFD/CAA benchmark in m-AIA. 
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2.4 Alya 
The Alya team has concentrated its efforts during the first year on testing and improving the 
code scalability on both CPUs and GPUs. Moreover, the node level performance of the GPU 
version of the code has been improved. 
The code has been tested on 3 different machines: Marenostrum IV and MN CTE-Power at 
BSC, and Polaris at Argonne Leadership Computing Facility. Moreover, we have recently 
received computational resources at the Karolina EuroHPC supercomputer and are currently 
starting tests on that machine too. Preliminary results are very similar to those obtained at 
Polaris which also uses A100 Nvidia GPUs, but slightly slower since the Maximum clock 
frequency is limited in Karolina to reduce energy consumption. 
 
To test the scalability of the code we solve the Compressible Navier-Stokes equations for a 
Taylor-Green Vortex problem at Reynolds number, Re = 1600, and Mach number, Ma = 0.1.  
For the temporal discretisation an explicit 4th order Runge-Kutta scheme is used. For the spatial 
discretisation third order hexahedral spectral elements are used. Meshes with N3 elements are 
used, with N varying from 64 to 420. In a mesh with continuous third order hexahedral 
elements, each element corresponds to 64 (43) nodes or Degrees of Freedom (DoF). Therefore, 
the number of DoF vary from 7.19 to 2005 million.  
 
Figure 5, presents the code scalability on Marenostrum IV, that uses Intel Xeon Platinum 8160 
CPUs. Despite each node has a total of 48 cores, only 46 cores per node are used because it has 
recently been discovered that Marenostrum IV suffers important scalability issues when the full 
48 cores per node are used. The reasons for this behaviour are still not clear. The figure shows 
that the code has an excellent weak and strong scalability on Marenostrum IV. For the strong 
scalability to show degradation lower number of DoF per core would have been needed. 
Efficiency is obtained by first calculating the Update Time (UT) for each run and then 
normalising with respect to the UT on 46 cores with a load of 156k DoF per core. The Update 
Time (UT) is defined as the computational time per time step and DoF. That is, the total 
computational time for one-time step divided by the average load per core (identified as r in 
Figure 5).   

 
Figure 5: Parallel efficiency of Alya on Marenostrum IV for different problems sizes and loads varying 

from 19500 to 156000 DoF per core. 
 
Figure 6 shows Update Time per GPU of Alya on two different supercomputers using Nvidia 
V100 and A100 GPUs. On the A100 GPU the Update Time remains bounded between 18 and 
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20 ns for loads ranging from 5 to 20 million DoF per GPU. The scalability starts to degrade for 
loads of less 5Million DoF per GPU. On the V100 GPUs the scalability is similar to the one on 
A100 GPUs but the performance also significantly degrades for high load per GPU due to the 
lower amount of memory available on V100 GPUs. 
 

 
Figure 6: Computational time per DoF, time step(ite) and GPU of on two different GPU machines Polaris 
(Nvidia A100) and MN4-CTE-Powe (Nvidia V100) for meshes ranging from 1283 to 2653 elements (57 to 

508 million DoF). 
 
The Alya team participated in the ALCF (Argonne Leadership Computing Facility) INCITE 
Hackathon (May 2023). Motivated by the hackathon mentors, the lead decided to take 
advantage of CUDA Aware MPI comms to enhance the scalability of the code. To do so, they 
had to discard the use of Unified Memory (adding “-gpu=managed” to compile flags) that is 
not compatible with CUDA Aware MPI. The use of Unified Memory simplifies memory 
management and makes coding easier. Moreover, before the hackathon, the version of the code 
with Unified Memory was performing much better than without it.  
 

 
Figure 7: Alya profiling with the Nvidia profiler. 

 
Figure 7 shows results obtained with the Nvidia profiler for the Unified Memory version of 
the code where one can see that the device to host and host to device memory copies take 
approximately 1.5 milliseconds. With the optimised non-Unified Memory version, the time 
for the memory copies reduces to less than one millisecond.  
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GPUs DoF/GPU A100 
old 

A100 
new 

A100 
ratio 

V100 
old 

V100 
new 

V100 
ratio 

4 14266656 17.02 10.25 1.66 31.30 17.15 1.82 
8 7133328 17.22 10.02 1.72 18.56 17.72 1.05 
16 3566664 22.35 10.60 2.11 21.11 19.46 1.08 
32 1783332 31.69 14.80 2.14    

 
Table 2: Comparison of Alya computational time [ns] per DoF, time step and GPU of on two different 

GPU machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100) before and after the Hackathon. 
 
Table 2 presents a Comparison of Alya computational time [ns] per DoF, time step and GPU 
of on two different GPU machines Polaris (Nvidia A100) and MN4-CTE-Powe (Nvidia V100) 
before and after the Hackathon. On the Nvidia A100 GPU there has been a significant (>1.66) 
gain in performance for all four analysed loads. The scaling is nearly perfect up to 3.5 million 
DoF per GPU. On the V100 GPU the gains are more modest except on the case with a high 
load per GPU. Not using Unified Memory, a much better memory management is obtained 
which eliminate de degradation of performance for high load per GPU which had been observed 
earlier.  

2.5 FLEW 
As already mentioned in the introduction of this section software developers deal with three 
main performance-oriented objectives: 

1. parallelisation-oriented software design using algorithms that remain efficient when 
parallelised. 

2. implementation “exposing” the parallel potential as much as possible. 
3. choice of suitable programming paradigms to best use the available hardware. 

FLEW uses explicit Runge-Kutta schemes for the temporal evolution and explicit finite-
difference schemes for the spatial discretisation, both very suitable from a parallel programming 
perspective. 
 
Within the scope of EXCELLERAT P2, we refer first of all to architectures available in 
EuroHPC resources during the project timeline. CPU-wise, these are mostly x86-64 machines 
but also some ARM platforms. From the point of view of accelerators, these are NVIDIA GPUs 
of different generations (Ampere, Hopper) and AMD GPUs (Instinct). In particular as regards 
FLEW, according to the DoA of the project, the development of a code capable of efficiently 
exploiting both NVIDIA GPUs and AMD GPUs is envisaged. From the point of view of the 
choice of paradigms, the most important characteristics to favour in the choice are: 

• possibility of achieving high level performance, in reference to the peak performance 
of the hardware but also to the performance actually achievable in similar cases 
according to existing literature; 

• create a code that remains maintainable over time, i.e., susceptible to future algorithmic 
evolutions, limiting the corresponding development effort on the part of the developer 
community; 

• create a code that is portable and/or has generality with respect to future expansions of 
the calculation backends. 

 
Unfortunately, at the current moment, there is no paradigm that allows you to achieve all three 
of these objectives. More precisely, there is no paradigm implemented in a sufficiently 
advanced way to achieve the objectives. To have portability in the strict sense, a standardised 
paradigm is necessary. The choice of OpenCL would require a restructuring of the total code, 
a significant burden that would make future algorithmic evolution difficult, as well as 
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essentially abandoning the Fortran language. The choice of other standard paradigms such as 
OpenMP and OpenACC is potentially valid, but clashes with the low/incomplete 
implementation of paradigms for different accelerators. Unfortunately, the ideal compromise 
between the three objectives requires interpreting the objective of code portability in an 
extended way, i.e., adopting a multi-paradigm approach (instead of the portability in the strict 
sense that would be obtained using a single paradigm). The multi-paradigm approach allows 
you to achieve the optimal performance that vendor-specific paradigms allow you to achieve. 
Secondly, the software can potentially support new paradigms by adding support for new 
backends and thus achieving portability on different existing and non-existing architectures. 
The challenge of creating a code that is maintainable and susceptible to future algorithmic 
evolutions with a reasonable effort remains open. 
 
The approach that we have decided to undertake in FLEW is therefore the multi-paradigm 
approach which however involves a two-phase code development line (see Figure 8): 
1. code development, for example with new algorithms, using a backend “master paradigm”. 
2. transformation of the calculation part using different “secondary paradigms” starting from 

the code of the main “paradigm”. 
 

 
Figure 8: Development strategy: CUDA Fortran and translations. 

 
CUDA Fortran was chosen as the main paradigm, capable of optimally exploiting NVIDIA 
GPUs. The choice is due to three main reasons: 

1. NVIDIA GPUs represent the computational core of most EuroHPC computing 
architectures and are therefore a reasonable hardware reference for the development of 
CoE software; 

2. good readability of the CUDA Fortran code, thanks also to the cuf automatic kernel 
directives, and in particular good ability to “expose parallelism” 

3. adequate quality of the compiler update that the vendor guarantees to make adequate 
use of its devices. 

 
The first sub-paradigm is actually the traditional paradigm of code designed to run on a 
traditional CPU. The choice not to have the CPU as the main paradigm derives from the fact of 
preferring a parallelisation-oriented paradigm such as CUDA Fortran, compared to a generic 
CPU-type paradigm. The calculation code for the CPU is then generated starting from CUDA 
Fortran in order to guarantee that development always takes place in a parallel oriented manner. 
 
To support AMD GPUs, the secondary paradigm developed is HIP/HIPFort. The difficulty of 
supporting HIP for a Fortran code is notable because, unlike CUDA Fortran, HIPFort is not 
able to compile calculation kernels in Fortran, but only to provide a connection infrastructure 
(via interfaces and more) between code Fortran and kernels written in C. It is therefore a 
question of managing, among other things, a massive transformation of the computing kernels 
from CUDA Fortran to C. 
 
Having a master paradigm means that all code developers can easily develop using CUDA 
Fortran and then delegate the task of translating the code to a different phase and/or group of 
people. For this process to work, a clear structural separation of the code is needed so that 
different backends can be programmed separately and at different times. In this regard, software 
architecture is crucial. The STREAmS community code (https://github.com/STREAmS-
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CFD/STREAmS-2) is developed by the same partners that develop FLEW (Sapienza/CINECA) 
and has important algorithmic similarities with FLEW. The architectural development of the 
two codes therefore takes place conceptually simultaneously, but the development is taking 
place at this stage mainly on STREAmS which is therefore currently in a more advanced stage. 
From a structural point of view, STREAmS can be considered as a simplified platform 
compared to FLEW for code design testing. The object structure of STREAmS is represented 
in Figure 9. 
 

 
Figure 9: STREAmS-2 object-oriented design which will be used in FLEW. 

 
The sketched object architecture allows the FLEW code to be separated into four sections with 
respect to the implemented equation and the supported computational backend: 
 
1. Sections equation-independent and backend-independent 

• object (Fortran derived type) : parameters 
• object (Fortran derived type) : field 

2. Sections equation-independent and backend-dependent 
• object (Fortran derived type) : base_<backend> 

3. Sections equation-dependent and backend-independent 
• object (Fortran derived type) : <equation>/equation_base 

4. Sections equation-dependent and backend-dependent 
• object (Fortran derived type) : <equation>/equation_<backend> 
• pure functions (Fortran module) : <equation>/kernel_<backend>   

 
Excluding computational kernels, the components are implemented via Fortran derived types 
in an object-oriented fashion where each derived type includes procedures as well as data 
attributes. Kernels are instead implemented as pure functions which therefore take all the 
variables they work on as arguments. This separation allows great versatility in the 
implementation of kernels which can be implemented with relative ease for example in C. 
Adding a new computational backend in this final FLEW design corresponds to creating objects 
and functions of points 2) and 4) whereas 1) and 3) sections can be unchanged. 
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Given the algorithmic similarity, albeit partial, between STREAmS and FLEW, FLEW could 
not only inherit the object structure of STREAmS but even be unified with STREAmS. The 
unification could be partial, in the sense of sharing some parts of code or related tools, or more 
complete in the sense that the result could be a single code. The possibility of such unification 
is still being studied. The unification between the codes can be helpful, also in terms of 
development effort, but the risk of creating excessive code complexity as well as limiting the 
optimisation of the calculation kernels must be carefully weighed. 
 
The proposed approach is substantially valid if the transformation procedure of the main 
paradigm into the secondary paradigms occurs with a reasonable effort. To make this easier, 
the choice that has been made is to limit ourselves to a CUDA Fortran code that is programmed 
efficiently but without particularly strong optimisations that would make the maintainability of 
the code as well as the conversion to other paradigms difficult. This choice proved to be 
adequate in STREAmS as the performances obtained are realistically close to those of the GPUs 
used. 
 
Figure 10 shows the planned backend which will be supported by FLEW, where CUDA Fortran 
is the primary developed paradigm, CPU and HIP are the derived ones, and OpenMP is the 
optional paradigm which will be attempted. 
 

 
Figure 10: Planned backend supported by FLEW: main paradigm (CUDA Fortran), translated 

paradigms (CPU, HIP), optional paradigms (OpenMP). 
 
For paradigms such as CPU, the conversion from CUDA Fortran is conceptually quite easy and 
includes the following main steps: 

• removal of device attribute for memory used for computation 
• removal of cuf directives and GPU synchronisations 
• transformation of explicit (global) kernels into traditional loops 
• cache oriented reordering of all loops 
• removal of all asynchronous communication components, which are not considered 

necessary to replicate in the CPU context as there are no CPU-GPU transfers involved 
 
For paradigms such as HIP, the conversion requires significantly greater efforts. Among the 
main steps we consider: 

• transformation of device memory into pointers and allocations using HIPFort interfaces  
• contextual creation of indexing maps to access device memory from C in a readable 

way 
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• explicit kernel transformation with multi-layer structure: Fortran procedure, Fortran 
interface for the wrapper, wrapper in C, kernel in C, 

• transformation cuf kernel into explicit kernels and transformation as in the previous 
point 

• replacement of asynchronous parts and in CUDA Fortran library calls in HIP 
equivalents 

 
Further paradigms are currently being studied and in particular the OpenMP paradigm which, 
being standard, could potentially provide considerable portability. This is a part of the 
development not strictly required in this project as CUDA Fortran and HIP are able to run 
optimally on NVIDIA and AMD GPUs, the reference architectures foreseen for FLEW in the 
EXCELLERAT DoA. OpenMP is one of the paradigms favoured by Intel GPU compiler 
implementations, which we believe are an important development to consider when developing 
HPC code. The OpenMP paradigm can potentially be also tested as an alternative for other 
GPUs, especially AMD GPUs. 
 
As seen, the transformation of the code from the main paradigm requires several steps which, 
for a code of a certain size, can be considerable. For this reason, an automatic (or semi-
automatic) conversion tool capable of generating the code for the other backends from the 
CUDA Fortran backend is being developed. The transition from manual conversion to 
automatic conversion (even if possibly with some manual input) makes the ordinary code 
development path significantly more agile (see Figure 11). The tool is in Python language and 
is designed to be extensible itself for the production of new backends in subsequent phases. 
 

 
Figure 11: Development strategy using automatic translation. 

 
All the activities described in this document are currently under development. At present, there 
are therefore three main lines of development: 
1. development of STREAmS (version 2) which, given the algorithmic similarity with FLEW, 

can provide decisive indications for the choices to be made on FLEW. 
2. development of FLEW by evolving the original code for algorithmic and physical validation 

in test cases. A first version of the CPU code has been completed alongside a 
preliminary (partial) version that supports NVIDIA GPU: these versions can be already 
used for production runs.  

3. development of the new FLEW rewritten in a modular, object-oriented and multiback-end 
way according to a technological infrastructure similar to that of STREAmS, as 
described in this document. In this context, a possible unification of STREAmS and 
FLEW, also given that the developer community is the same, is being studied. 

 
At the moment, intermediate results are only available for the first two points. Since these are 
not results related to the final code (objective of the third point), all optimisation, porting and 
performance results will be presented when the code in the final design is available, at the end 
of the activity of point 3. 
 
The activities described follow without deviations what was foreseen in the global GANTT of 
Use Case 6. The completion and validation phase of the starting version of the FLEW code was 
completed at M9 (see D2.14), and we are now proceeding (M9-M15) to rewriting/refactoring 
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the code according to the design described in this document. The actual porting will be the 
subject of activities M14-M27, and the deployment/validation/benchmarking activities on 
different EuroHPC clusters will be performed in a similar time window (M18-M32). 
 

2.6 OpenFoam, ElmerFEM, Raysect, Mitsuba 2 
The UL team focused this year on the field line tracing optimisation, since this is the first 
simulation step of further-application case. The code L2G [1] developed at UL and ITER has 
been optimised for better computational efficiency. The algorithmic improvements of the code 
are: 

• Octree space partitioning 
• Bounding box partitioning of large meshes to decrease time of line triangle intersection 

checks. 
 
The parallelisation of field line tracing is also achieved by dividing the trace into multiple 
smaller traces. The cases in the L2G module are run with 1 OpenMP thread by default.  
 
A benchmark case, named Inres1 case was run for 1, 2, 4, 8 and 16 OpenMP threads. For 
performance tests on huge meshes the target and shadow geometries from the Inres1 case were 
remeshed (using the SMESH module in SALOME) to element sizes of approximately 10, 3, 2 
and 1 mm. The last size resulted in a target mesh of 3046416 triangles and a shadow mesh of 
25309694 triangles. This means that the algorithm launched 3046416 traces and in each step 
each trace was checked for intersection with 25309694 triangles, yielding a number 
25309694*3046416/1e9 = 77103.856756704 billion of total intersection checks (see Fig. 12 
and Table 3) Of course, the usage of algorithmic improvements described earlier reduced the 
number of checks. In table below a total execution time is given depending on the mesh size 
(the multiplication of both target and shadow triangles gives number of intersection checks) 
and number of threads. 
 

 
Table 3: Wall clock time [s] depending on the mesh size and number of threads. 

 
This specific test was conducted on HPC at Faculty of Mechanical engineering, University of 
Ljubljana. Similar checks are underway on Vega HPC. 
 
Figure 12 shows total execution times depending on the mesh size and number of threads used. 
The results show that many threads execution speeds up field-line tracing on million size 
meshes for a factor more than 2 with the use of 16 threads. 
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Figure 12: A comparison of execution times for different mesh size (triangular mesh). The legend refers to 

number of threads. 
 
For L2G code the output meshes and results are stored in Med file format (based on HDF5 
library), the standard binary file format for storing results in SALOME open source simulation 
environment and used at UL extensively for pre and post processing. Next year, the UL work 
in Task 3.1 will focus on optimisation of thermal modelling (OpenFOAM) and ray-tracing 
(Raysect) codes.  
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3 Task 3.3: Testing, Validation and Deployment  
 
Contributors: E4, BSC, KTH, RWTH, CERFACS, DLR, CINECA, UL  
In this section, we will provide an overview of the work conducted within the framework of 
Task 3.3. It is essential to mention that due to project First Amendment (July, 2023), the start 
of this task was rescheduled from Month 1 to Month 9. Therefore, in the present D3.1, only 
activities relating to M9-M12 are reported.  
The aim of this task is to focus on the testing and validation activities of various methodologies 
and workflows applied to execute the use cases. This includes the development of automated 
testing strategies and deployment processes, ensuring that the results can be replicated and 
extended for broader applications. These tests will be consolidated into a testing platform 
capable of assessing performance and accuracy across diverse architectural environments. The 
successful execution of this task relies on close collaboration with application and 
computational scientists to guarantee the effectiveness and efficiency of these advancements. 
As the workflows comprise multiple components that may run on potentially diverse hardware, 
the validation and benchmarking results will span from individual component assessments to 
full-scale simulations and complete workflow rounds. 
In summary, this task comprises three core aspects, revolving around a unified testing platform 
serving the purposes of validation, deployment, and benchmarking. The specific definition and 
execution of this testing platform, as well as the overall approach of Task 3.3, will largely 
depend on the input and direction provided by CASTIEL 2 project managing the Coordination 
and Support for National Competence Centres (NCC) and Centres of Excellence (CoE) on a 
European Level Phase 2. Since Task 3.3 is inherently coupled with our collaboration with 
CASTIEL 2, the activity is carried out in close coordination and, in particular, timelines and 
main decisions should be agreed in the CASTIEL 2 context. 
Over the past few months, CASTIEL 2 has conducted two surveys addressing the needs of 
different CoEs to collect information useful to guide its coordination role. In particular, we 
report and comment here the main results coming from the surveys which can be useful for 
what concerns the present T3.3 context. Table of results are provided in Table 4, Table 5, and 
Table 6. 
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Table 4: EXCELLERAT P2 codes and availability: data from CASTIEL 2 survey. 

We selected the most relevant information to highlight the most significant challenges in the 
creation of the unified platform foreseen in T3.3. In particular, we discuss two main challenges: 

1. Code availability, and in particular open-source issue 
2. Platform architecture deployments 

The first challenge is well described in Table 4 where we show the main information of 
EXCELLERAT application codes highlighting three main points: 

• Owner of code 

• Code availability and license 

• Terms of usage 
Designing and implementing a unified platform is a clear challenge considering the availability 
of the codes is very limited. Indeed, only two of the 7 scenarios (6 Use cases and 1 FA) are 
based on publicly available codes. Two additional scenarios work with codes which will 
become open-source during the project (one during 2023 and one at the end of the project). The 
remaining scenarios deal with closed-source code, in some cases available only after individual 
agreements.  

Code History, Versions Owner Code & Licence URL Terms of Use

CODA
More than 20 years development 
(TAU, Flucs, CODA)

CODA is jointly owned by 
ONERA, DLR and Airbus.

proprietary, based on 
individual agreement

No public access

AVBP
AVBP has been developped 
since the end of the 90's at 
CERFACS. 

CERFACS
proprietary, based on 
individual agreement

No anonymous access.  

m-AIA
Development since more than 15 
years

RWTH Not decided yet.
The code will go open source in 
2023.

Not decided 
yet.

Alya Developed since 2004. BSC
Available Source or 
Software as a Service 
licenses

https://gitlab.com/bsc-alya/alya, 
https://bsc.es/research-
development/research-
areas/engineering-simulations/alya-
high-performance-computational

Free under 
collaboration 
agreement

Neko Developed since 2018. KTH Open Source (BSD)
https://gitlab.com/ExtremeFLOW/n
eko , https://neko.cfd/

No 
Restrictions

FLEW Developed since 2011.
Sapienza University of 
Rome

Proprietary, based on 
individual agreement 
(until it will be open 
source).

The code will go open source
before the end of the project.

Not decided 
yet

OpenFoam/
Raysect

Developed since 2014
OpenCFD Ltd 
(OpenFOAM), Alex 
Meakins (Raysect)

Open Source

https://github.com/raysect 
https://develop.openfoam.com/De
velopment/openfoam/-
/wikis/precompiled

No restrictions
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Table 5: EXCELLERAT P2 codes and deployment on EuroHPC systems: data from CASTIEL 2 survey. 

 
The platform diversity against EXCELLERAT application software is summarised in Table 5. 
In particular, we consider 17 different computing architectures corresponding to different 
partitions of EuroHPC machines. For each computing unit and each code, we collected two 
main information related to deployment: 

• Status: which may be Productive, Work-in-progress or Not yet done 

• Planned: which may be Yes, No, Maybe 
Despite at this stage, the results are still not completely clean (further collection will be 
performed in the next months) it is already possible to extract a general information. Only one 
code declares the plan to be able to deploy the code to each EuroHPC partition. As for the other 
codes, there is a significant variability in the number and type of target partitions. As such, a 
possible unified platform mandatorily inherits this kind of limitations. However, even 
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supporting the planned architectures is a significant challenge even considering different types 
of involved heterogeneous accelerations. 
Regarding the timeline of the planned activities, Table 6 shows that some applications already 
started deployment and production to different architectures. The need for resources is clearly 
an additional issue which is, however, not directly related to the present T3.3 task. The second 
part of the survey (Questions 5-8) specifically deal with feedback on the first indications coming 
from CASTIEL 2 meetings. In particular, CASTIEL 2 is focusing on the possibility to establish 
a centralised EuroHPC-driven source code repository. The repository could be based on GitLab 
technology and the GitLab runner might be an adequate platform which can be used for CI/CD. 
In this context, GitLab runner could be part or represent itself, as the unified platform used in 
T3.3. However, as discussed from Table 4 data, there is the issue of managing not open-source 
codes which can be contrasting with respect to centralised source code repository. It's worth 
noting that, at present, only one of the use cases is open source, and some partners intend to 
keep their code proprietary. CASTIEL 2 leans toward an open-source approach, but we need to 
find a consensus on this matter. 
In our roadmap planning, our approach is to track CASTIEL’s lead. Should CASTIEL offer a 
comprehensive and inclusive framework, we will harmonise our efforts with it. However, if 
CASTIEL’s framework is not all-encompassing, our task will involve a detailed evaluation of 
all projects and the establishment of guidelines for the documentation required for validation, 
deployment, and benchmarking. 
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Table 6: EXCELLERAT P2 deployment status and requirements: data from CASTIEL 2 survey. 

  

ID Question Answer

1
Which access calls have you used? 
(Benchmarking, Development, Regular, 
Extreme)

Benchmarking  (5); Development (1); Regular (2).

2
How many different codes were already 
executed successfully on at least one 
EuroHPC system?

8 codes successfully executed.

3

Are the resources requested and 
assigned are sufficient to reach the 
objectives of your CoE?
Likely the resources will be sufficient for 
the first year. Can you already do a 
projection for the following
years?

Mostly all code owners state that resources are sufficient for the first year (2023), where the code is 
tested and benchmarked. But more resources will be needed from 2024 till the end of the project.  
BSC (Alya) estimates for next years:  2024 3M Core Hours, 2025 5MCore Hours, 2026 9M Core 
Hours. CINECA (Flew) estimates that about 1M GPU hours/year will be sufficient. 3 out of 7 code 
owners could not make any predictions.

4

Please report briefly about the 
experiences made on the EuroHPC 
systems?
How was the application process? Did 
you face any difficulties getting your 
codes to run? Did you get
(technical) support by EuroHPC hosting 
sites if needed?

The experience is overall positive. Application is smooth but bit too long to be granted access (over 
a month ). Some technical support from Hosting Sites was given. One code owner reported 
different access procedures and conditions to each system though soi t would be great to have a 
unique profile for EuroHPC users.

5

Can you please provide your feedback 
regarding the need of having a common 
GitLab and
give some preliminary information about 
what you would push to such repository? 
E.g. share
the actual code, deployable software 
artefacts, binaries, deployment recipes, 
...

All have GitLab or Github repositories, one code owner has already GitLab runners to run the CICD 
pipelines. If required by Castiel2 we are available to share the source code and deployment recipes, 
as docker/singularity images of the protected software (2 or 3 application) and opensource 
packages (all).

6
Can you start deploying codes on a 
EuroHPC system in the next weeks using 
GitLab Runner?

yes (4), possibly testing the software stack beforehand; not (2)

7

What will be your first code to share with 
the common GitLab server? Can you 
provide a timeline? (describe some 
technical limitations that you might face)

The non-opensource code cannot be uploaded as it is to the GitLab server without some 
information on the access policy. The opensource ones can be upload anytime. One code owner still 
needs to complete the development of the code (M18-M24), then will be ready to share code.

8 Do you have further feedback to us?

The GITLAB/CI requirement in this document seems to imply its coming from us whereas it was not 
on the original proposal. We can adapt to this situation but a clarification seems in order. Also 
looking at the different EuroHPC hosting sites, support for GitLab CI and/or containers seems very 
heterogeneous. A panorama of support per system would be appreciated.  
It would be good to have the contact details to the technical support of the common GitLab server 
or the EuroHPC system.
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4 Task 3.4: Exascale Engineering  
 
Contributors: CERFACS, KTH, RWTH, BSC, DLR, CINECA. 
 
This task is focused on the specific developments required to extend the simulations workflows 
from Task 3.1 to achieve the large-scale readiness required in exascale simulations. Achieving 
exascale simulations is challenging not only from the software point of view, but also from the 
hardware operation, as large number of resources need to be allocated to a single application. 
In fact, ensuring high efficiency and performance in large-scale workflows requires specific 
directives on the bash scripts and use of resources, so the applications can be distributed over 
large number of computing nodes. These simulations require the direct interaction of the 
application’s user/developer, the HPC centre’s operation and software support staff as well as 
the HPC centre’s on-site staff to make ensure an efficient execution of the run.  

4.1 CODA 
During the reporting period one main tasks was carried out for the FlowSimulator framework 
used by CODA: Based on an initial analysis, we improved FlowSimulator’s support for very 
large meshes and very large core counts. We identified and solved multiple issues in the mesh 
partitioning stage, which consists of a fast pre-partitioner based on recursive coordinate 
bisection (RCB) and a following graph-partitioner such as ParMETIS. In the FlowSimulator 
implementation of an RCB we solved an integer overflow and an out-of-memory error for very 
large meshes (more than 1 billion elements). In the graph-partitioner we solved an out-of-
memory error in the graph-extraction phase for very large core counts. In combination with 
other improvements, we were able to overcome a previous scalability limit at about 8,192 MPI 
processes that limited the execution of simulations with more than 32,768 cores on the DLR 
production systems CARA and CARO. We are now able to run successfully on 131,072 cores 
(the largest partition of the CARO system). In addition to increasing the scalability of 
FlowSimulator, the pre-processing stage was also drastically accelerated. 
 

4.2 AVBP 
 
Efforts to bring AVBP to exascale-ready performance have focused on the portability of the 
code for AMD GPUs. Indeed, at the moment the largest clusters in EuroHPC and in the world 
are equipped with AMD Mi250 GPUs.   
The code supports GPU acceleration using the OpenACC framework.  Therefore, compatibility 
for now remains limited to HPE systems equipped with the CRAY compiler suite. Thankfully, 
we have access to two of those systems in EUROPE, the ADASTRA Tier 1 system from 
GENCI/CINES in Montpellier FRANCE and LUMI G at CSC Finland.  
Portability of the current code build is on-going and an AMD GPU capable code prototype for 
non-reactive flows exists.  Performance on a small test case shows that good scaling is possible 
with 1M elements per GPU (see Figure 13 below).   
The extension to reactive flows, requires some code refactoring being undertaken by the CFD 
team at CERFACS outside of the EXCELLERAT project and is expected to be completed by 



Public 
Copyright © 2023 Members of the EXCELLERAT P2 Consortium 

Project 101092621 EXCELLERAT P2 Deliverable D3.1 Page 30 of 34 

February 2024. Tests could not be performed in LUMI G as the CRAY compiler version was 
too old at the time of access but has been updated since and will be tried in Q1 2024.  

 
Figure 13: Strong scaling of AVBP on the ADASTRA system using 4 Mi250 per node. Nonreactive 

windfarm case. 

Additionally, a benchmark access has been requested to test AVBP on LEONARDO Booster, 
ensuring that the refactoring of the code does not impact NVIDIA GPU performance.  

4.3 m-AIA 
The m-AIA code has been thoroughly tested on the HAWK supercomputer at HLRS, 
deployment on the Vega EuroHPC system took place and benchmarking is currently under 
progress. Computational resources on the Karolina and MeluXina EuroHPC supercomputers 
have been granted as well and code deployment and testing will start once the access to the 
systems is provided. 
The strong scalability of a realistic coupled CFD/CAA chevron jet application with m-AIA on 
HAWK is shown in Figure 14. The predicted flow field and the acoustic field for a baseline 
nozzle without chevrons is visualised in Figure 15. With about 300 million CFD cells and 
1*10^9 CAA DoF this setup corresponds to a smaller scale run according to the exascale 
execution profile defined in WP2 for UC-3. As evident the code shows excellent scalability 
when going from 2048 up to 262144 MPI processes, i.e., the maximum allocation size on 
HAWK, achieving about 86 simulation timesteps per second compared to 0.68 for the baseline. 

 
Figure 14: Strong scaling for a coupled CFD/CAA chevron jet application with m-AIA. 
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Figure 15: m-AIA coupled CFD/CAA simulation: baseline nozzle without chevrons showing flow 

structures (bottom) and the acoustic field close to the nozzle (top). 

4.4 Alya 
CFD users of supercomputers usually resort to rule-of-thumb methods to select the number of 
subdomains (partitions) when relying on MPI-based parallelisation. One common approach is 
to set a minimum number of elements or cells per subdomain, under which the parallel 
efficiency of the code is “known” to fall below a subjective level, say 80%. The situation is 
even worse when the user is not aware of the best practice for a given code and a huge number 
of resources can thus be wasted. In a previous work [2], we have developed a workflow to 
ensure a target communication efficiency, as shown in Figure 16.  

 
Figure 16: Optimizing the resources. Workflow for elastic computing of CFD simulations, involving 

different codes and libraries: Alya (CFD), TALP (efficiency measures) and COMPSs (elastic computing). 

The workflow ensures an elastic computing methodology that adapts at runtime the resources 
allocated to a simulation automatically. The criterion to control the required resources is based 
on a runtime measure of the communication efficiency of the execution. According to some 
analytical estimates, the resources are then expanded or reduced to fulfil this criterion and 
eventually execute an efficient simulation. The methodology was based on the CFD code Alya 
together with a runtime library TALP to measure performance metrics, and finally COMPSs to 
orchestrate the workflow and interact with SLURM workload manager. 
The work proposed here follows a different strategy, although the main objectives are 
maintained, that is to ensure a parallel efficient simulation. The strategy is now based on DMR 
runtime, which handles the MPI communicator and oversees expanding or reducing the 
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resources. In this new approach, TALP is now integrated in DMR library [3,4], thus simplifying 
the interactions of the CFD code Alya and the computing environment.  
During this period, we have worked on the interfacing of DMR with Fortran language, as DMR 
which was originally written in C. A mini-app reproducing the workflow of Alya has been 
finalised and tested. The library together with the miniapp have been containerised and can be 
found here [5]. 
Task 3.4 has several objectives, one of which is to focus on achieving optimal efficiency and 
performance in large-scale workflows. The proposed flexible workflow is designed to 
dynamically manage parallel efficiency during runtime by selecting the appropriate resources 
based on metrics such as communication efficiency and load balance. Predicting the efficiency 
of a simulation beforehand is challenging, primarily because strong scalabilities are typically 
evaluated relative to a baseline. If the baseline is already in an unfavourable state, this approach 
can yield highly inaccurate results. Furthermore, a priori strong scalability tests fail to provide 
insights into how parallel efficiency deteriorates. Parallel efficiency is affected by two key 
factors: load balance and communication efficiency, each of which can be addressed using 
distinct methodologies. Load balance issues can be rectified through redistribution or the 
utilisation of runtime mechanisms at the node level, such as DLB. On the other hand, 
communication efficiency can be enhanced through the strategy proposed here, which involves 
resource control, improved scheduling, or better repartitioning strategies, among other 
techniques. 
The task description specifies that “These simulations require the direct interaction of the 
application’s user/developer, the HPC centre’s operation and software support staff as well as 
the HPC centre’s on-site staff”. Specifically, the work on malleability requires active 
cooperation between the CFD code developer (Alya) and the runtime developer (DMR), and 
their interactions with the support team, especially since DMR interfaces closely with SLURM. 
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5 Conclusion 
Advances in the different codes to satisfy the needs of the use cases have been presented. 
Scalability has been tested on CPU and GPU supercomputers and improvement have been 
implemented. Advances in the porting and optimisation for GPUs has been presented. CINECA 
and URMLS are using a multi-paradigm approach for their code FLEW that will allow them to 
run on a wide range of hardware. Most of the teams are advancing satisfactorily in WP3. The 
NEKO team has focused more on their use case (WP2) and on the activities in WP4 during the 
first year of the project. The algorithmic and computational developments of the different 
methodologies defined to execute their use case are now clearer and they will increase their 
dedication to WP3 during the following months. Since we still have 3 more years, we believe 
that there is currently no risk for the correct completion of the proposed activities for NEKO. 
 
Task 3.1 focuses on optimising the computational efficiency of the simulation methodologies 
employed in the use case at inter- and intra-node levels. As mentioned above, some teams have 
worked on evaluating and improving the parallelisation strategy. Others have worked on 
improving the processing on GPU accelerators or developing approaches that can handle 
multiple paradigms. 
 
Task 3.3 comprises three core aspects, revolving around a unified testing platform serving the 
purposes of validation, deployment, and benchmarking. The specific definition and execution 
of this testing platform, as well as the overall approach of Task 3.3, will largely depend on the 
input and direction provided by CASTIEL 2 project managing the Coordination and Support 
for National Competence Centres and Centres of Excellence on a European Level Phase 2.  
 
Task 3.4 is focused on the specific developments required to extend the simulations workflows 
from Task 3.1 to achieve the large-scale readiness required in exascale simulations. The CODA 
team has focused on mesh partitioning within their FlowSimulator framework. The AVBP team 
has worked on the scalability for AMD GPUs. The m-AIA team has analysed the strong 
scalability of a realistic coupled CFD/CAA chevron jet application. The Alya team has worked 
with an elastic computing methodology that adapts the resources allocated to a simulation 
automatically at runtime. 
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