

HORIZON-EUROHPC-JU-2021-COE-01

The European Centre of Excellence for Engineering
Applications

Project Number: 101092621

D4.1
Workflows for engineering simulations progress report

Ref. Ares(2023)7918608 - 21/11/2023

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 2 of 15

The EXCELLERAT P2 project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 101092621. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and
Germany, Italy, Slovenia, Spain, Sweden and France.

Work Package: 4 Workflow Development
Author(s): Jonathan Vincent KTH
 Antoine Dauptain CERFACS
 Dennis Grieger USTUTT
Approved by Executive Centre

Management
21.11.2023

Reviewer Jernej Kovačič UL
Reviewer Christopher Röhl SSC
Dissemination
Level Public

Date Author Comments Version Status
2023-10-18 J. Vincent Initial draft for review by co-authors V0.1 Draft
2023-10-19 J. Vincent Final draft for review by co-authors V0.2 Draft
2023-10-20 J. Vincent Draft internal review V0.3 Draft
2023-11-07 J. Vincent First review corrections V0.4 Draft
2023-11-16 J. Vincent Final Version V1.0 Final

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 3 of 15

List of abbreviations
ASMR Automatic Static Mesh Refinement
CFD Computational Fluid Dynamics
CI Continuous Integration
HPC High-Performance Computing
IO Input-Output
MPI Message Passing Interface
SME Small and Medium-sized Enterprises
VTK Visualization Toolkit
WP Work Package

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 4 of 15

Executive Summary

This document summarises the progress in workflows for engineering simulations connected
with the use cases defined in EXCELLERAT P2. We present the development of in-situ
visualisation which is a requirement for running the use cases at exascale.
We also show developments in improving efficiency of workflows, and work on standardising
workflows. The latter is particularly important in simplifying workflows for new users,
particularly new industrial users. In addition, we show the initial results for the use of automatic
static mesh refinement, as an automatic mesh generation tool, which has been used to generate
meshes of 50 million elements to date.

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 5 of 15

Table of Contents

1 Introduction .. 7
2 In-situ Visualisation ... 7
3 Homogenisation/Standardisation of HPC Workflows ... 8

3.1 Tools for Workflow Development .. 9
3.1.1 Lemmings ... 9
3.1.2 Scales .. 9

3.2 Recommendations ... 10
3.2.1 Unified Chronological logging ... 10
3.2.2 A Unique Identifier for workflow instances .. 10
3.2.3 No File Movement ... 11
3.2.4 Version and Document the Workflow ... 11
3.2.5 A Sandbox Scheduler ... 11
3.2.6 A mock-up Solver .. 11
3.2.7 End User Commands .. 12
3.2.8 Container issues .. 13

3.3 Automatic static mesh refinement ... 13
4 Conclusions .. 14
5 References .. 15

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 6 of 15

Table of Figures

Figure 1: Velocity field of a Taylor Green Vortex obtained using Vistle and the SENSEI

interface of Alya. .. 8
Figure 2: The backbone loop of the Lemmings automation scheme. By injecting custom code

into the orange blocks, the user can adapt the tool to most workflows. 9
Figure 3: A screen capture of one of the high-level monitoring dashboards of Scales.

Workflows of tasks can be resubmitted on the cluster until satisfactory results are
obtained. Unlike the Lemmings approach, all connections and expert commands are
encapsulated behind this graphical dashboard. .. 10

Figure 4: Figure showing how a mesh is automatically refined using mesh adaptation with the
ASMR workflow. The configuration is an academic Hydrogen Burner (TUB burner).
Our final goal is the generation of a 1 billion cell mesh in a single workflow. 14

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 7 of 15

1 Introduction
Workflows in High Performance Computing (HPC) can be considered on two levels, firstly the
workflow of an individual simulation and secondly that of an entire set of simulations working
towards solving a particular problem.
Traditionally the first of these consists of pre-processing, solving and post-processing, which
implies a split between obtaining the solution, storing the output data and then visualising the
results. Exascale engineering simulations, however, produce a very large amount of data and
make this method very challenging to use, so a different approach is needed. A major focus of
EXCELLERAT WP4 is to enable in-situ analysis and visualisation, enabling the simulation
output to be visualised and analysed in-situ instead of being saved and stored, greatly reducing
the storage requirements for exascale simulations, and enabling the workflows to be run at
exascale.
EXCELLERAT also focuses on the second part of workflow development, where we consider
the efficiency and standardisation of the sets of simulations working towards solving a
particular problem. The standardisation of workflows is particularly important for simplifying
access to HPC for industrial users, a key task within EXCELLERAT P2. As part of this work
the Lemmings tool [1] has been developed during EXCELLERAT P1 which allows workflows
to be developed and deployed on different hardware easily, as the tool hides the complexity and
differences between the systems from the end user, simplifying the usage of the HPC workflows
and reducing the training and expertise needed to run an HPC workflow.
Another important part of Computational Fluid Dynamics (CFD) workflows is the generation
of the mesh on which the final simulations are run. Generating this mesh can be a difficult task,
both in computer time and human time. For exascale an automatic method is required, and we
present progress on the development of the automation of mesh design.

2 In-situ Visualisation
In-situ visualisation is an important part of preparing workflows for exascale, as it removes the
very large storage and IO requirements of the traditional pre-processing, solving and post—
processing workflow. The amount of data needed for this traditional workflow is no longer an
option for exascale, due to the very large amount of data that would be needed, so greatly
reducing the storage and IO is a requirement.
During EXCELLERAT P1 the SENSEI [2] in-situ framework was chosen as one of the tools
to establish common infrastructure for in-situ capabilities. As part of this an analysis adapter
for SENSEI was developed for Vistle [3], and Nek5000 [4] was instrumented with SENSEI.
This work is continued in EXCELLERAT P2. Due to changes in the APIs of SENSEI and Vistle
the SENSEI – Vistle analysis adapter needed to be updated. The biggest change in this update
is that SENSEI’s Visualization Toolkit (VTK) bridge is now able to couple simulations and
analysis tools built with different VTK versions.
The next step was applying the knowledge from instrumenting Nek5000 to Alya [5]. Since both
SENSEI and Alya using the CMake [6] build system as build system generator linking it to
SENSEI was relatively straight forward. It was also possible to reuse most of the code used in
Nek5000 to bridge from the simulations Fortran code to the SENSEI’s C++ interface through
C bindings. As an initial step Alya’s grid consisting of high-order Lagrange hexahedron cells
is converted to VTK which has built-in support for this type of cells.

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 8 of 15

The velocity data array is exported to the in-situ visualisation every timestep. The grid does not
change during the simulation, and so only needs to be exported once. This is done in the first
timestep.
Vistle however does not support high-order cells, therefore, a conversion algorithm was
implemented to convert the high-order Lagrange hexahedron cells of order x, y, z used in Alya
to the transformed to x • y • z linear hexahedrons needed for Vistle.
The functionality of coupling Alya through SENSEI with Vistle was tested using a small
simulation case running on four Message Passing Interface (MPI) ranks, and a simple image
showing the output of a Taylor-Green vortex simulation (see Figure 1).

Figure 1: Velocity field of a Taylor Green Vortex obtained using Vistle and the SENSEI interface of Alya.

In addition to the in-situ work on Alya, the initial port of the Nek5000 SENSEI implementation
has been completed is also underway on adapting Neko [7], with in-situ tools, however
technical problems remain before an in-situ visualisation using Neko can be performed.

3 Homogenisation/Standardisation of HPC Workflows
Using HPC systems is often complicated, and different HPC systems require different
commands and tools to use them effectively. To facilitate the industrial use of CFD applications
it is important to create a standardised workflow. A standardised workflow is a significant step
in improving the tool maturity, replacing several manual actions with an automated workflow,

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 9 of 15

and simplifying the use of the EXCELLERAT CFD applications as well as reducing training
time.

3.1 Tools for Workflow Development
As facilitating the industrial use of CFD though refining the creation of relevant workflows is
a key part of EXCELLERAT P2. The initial automated workflows while suitable for research
applications, require significant enhancement before they would be suitable for industrial
applications. Several tools have been developed to assist this work.

3.1.1 Lemmings
Lemmings is an open-source Python package that is simple to install using python package
managers. It was initially developed during EXCELLERAT Part I by CERFACS. This software
simplifies the submission of multiple inter-dependent jobs on HPC cluster schedulers. Although
originally tailored for CFD applications, Lemmings can be used in many recursive job
scenarios. It also incorporates a farming mode that facilitates the replication of recursive jobs
for parametric studies. Lemmings offers an efficient solution for automating pre-existing
manual workflows while allowing the terminal commands used by conventional HPC to be
imported. A typical workflow loop for the Lemmings automation scheme is shown in Figure 2.

Figure 2: The backbone loop of the Lemmings automation scheme. By injecting custom code into the

orange blocks, the user can adapt the tool to most workflows.

3.1.2 Scales
SSC Services GmbH, in alignment with the European project EXCELLERAT, has introduced
the Scales solution. Scales was designed to aid small and medium-sized enterprises (SMEs)
lacking expertise in HPC and integrates workflows into a web portal. The service records each
workflow and can subsequently replay it with diverse data feeds. The user experience provided
by Scales resembles that of Gitlab Pipelines, a widely utilised system within the Gitlab
community. This approach offers an intuitive learning curve for users, reducing training time
and simplifying the use of HPC resources to new users. Scales powers the Data Management

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 10 of 15

Platform EXCELLERAT service [8]. Figure 3 shows the high-level monitoring dashboard of
Scales.

Figure 3: A screen capture of one of the high-level monitoring dashboards of Scales. Workflows of tasks
can be resubmitted on the cluster until satisfactory results are obtained. Unlike the Lemmings approach,

all connections and expert commands are encapsulated behind this graphical dashboard.

3.2 Recommendations
The initial findings described in the following sections were generated using a test workflow of
combustion chamber behaviour analysis provided by the Safran Group [9]. This workflow was
analysed using the lightweight open-source tool Lemmings.
While the initial findings were developed using CFD workflows, we believe the insights from
studying this workflow are universally applicable across many domains, workflow managers
and job schedulers. In the following sections we detail many of these specific insights.

3.2.1 Unified Chronological logging
Most workflows use tools with different and varying origins. These tools encompass research
solvers, shell commands, postprocessing utilities, and analysis software, each with its output
format and logging mechanisms. These many and diverse outputs can make identification of
the source of any issues challenging. Streamlining these diverse log entries into a single,
chronological log file proves invaluable in saving time and enhancing collaboration among
developers, users, and support teams.

3.2.2 A Unique Identifier for workflow instances
One common challenge faced by new users when working with workflows is managing
multiple instances concurrently. Distinguishing between results generated by different
instances can become unexpectedly complex, leading to confusion. To address this, we
recommend the generation of unique execution IDs, akin to the unique job IDs provided by the
scheduler. These IDs serve multiple purposes: they facilitate monitoring and debugging by
naming the unified log, enable customisation of job names for clear identification in scheduler
queues, and streamline general control commands, simplifying the management of multiple
workflow instances.
This idea is implemented in Lemmings by ensuring that each chain of Lemmings jobs on the
cluster uses the same name, a user defined prefix followed by two random syllables, followed
by two digits. In the following example, this name is twicer_JEXA93 for all jobs:

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 11 of 15

Status for chain twicer_JEXA93
+------+---------------+-----------------+-----------+--------------+--------+---------+
| Loop | Solution path | Job end status | progress | CPU time (h) | job ID | pjob ID |
+------+---------------+-----------------+-----------+--------------+--------+---------+
0	./	ended, continue	NA	0.001	95575	95578
1	./	ended, continue	NA	0.002	95590	95591
2	Submitted	Submitted	Submitted	Submitted	95611	95612
+------+---------------+-----------------+-----------+--------------+--------+---------+

3.2.3 No File Movement
In our experience, we encountered a common pitfall where archived simulations involved
extensive file movement within the workflow. These moves resulted in broken relative paths,
rendering archived runs challenging to reproduce. The solution lies in avoiding any file
movement within the workflow. All executions should occur within their designated, definitive
folders, ensuring a seamless workflow history for easy re-execution.

3.2.4 Version and Document the Workflow
An effective collaboration between developers and customer beta-testers during workflow
iterations requires clear versioning. This extends beyond component versioning to encompass
the evolution of the workflow itself. Additionally, documenting the workflow strategy within
each job folder, outlining the initial file locations, databases, and mesh, is very important when
support is provided by HPC domain experts, who may not be users of the workflow themselves.
This approach simplifies future work and enhances communication.

3.2.5 A Sandbox Scheduler
Often HPC facilities offer a “debug” partition for rapid testing of individual runs, workflows
that consist of numerous jobs, can result still result in significant waiting times. To reduce
feedback delays for developers and support teams, we highly recommend adopting a “sandbox
scheduler” i.e., a lightweight emulation of a scheduler, as demonstrated by the Lemmings
sandbox, which can significantly accelerate testing and debugging of the automated workflows.
A sandbox scheduler can also be easily used within a suite of Continuous Integration (CI) tests,
simplifying the automatic testing of changes.
The Lemmings sandbox for example supports four commands start, submit, cancel and qstat,
i.e. the commands to start the tool, add a new job, cancel a job and show the current queue
respectively. Everything is then synchronised by updating a file on disk. The whole sandbox
consists of 400 lines of python lines and is readable at the readable on the Lemmings public
repository [10].

3.2.6 A mock-up Solver
Similar to the sandbox scheduler, the concept of a mock-up solver streamlines the testing
process. The mock-up solver is a program that takes core HPC solver inputs and rapidly
generates dummy outputs, mimicking a real simulation. This testing involving multiple
simulations becomes feasible within minutes. This considerably enhances the work of the
developers and support teams.
In order to create a mock-up solver for the AVBP [11] case, a script was created called
“avbp_mockup”. This script reads the main input file, running parameters and the mesh files.
It then creates from these the relevant output files, i.e., the solution at specific time points,
averaged solutions and monitoring files.

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 12 of 15

3.2.7 End User Commands
Workflow commands often contain detailed information essential for engineers overseeing the
process, yet they can be overwhelming for end users. To strike a balance, we propose
segregating “End User Commands” into a separate script, such as a shell script in our case
study, managed by the customer. This straightforward approach has proven highly effective,
enabling most initial user requests to be addressed directly within the customer’s organisation
by refining the user experience.
A typical BASH shell script that could be used for this process is shown below.
#!/bin/bash

echo "Loading bash commands for WorkFlow FooBar in your terminal."

Adapt this to your cluster
export LEM_MACHINE_FILE=”mymachine.yml"
export WFLOW_PATH=”(…)/WorkFlow_Lemmings/"

export LEM_WORKFLOW="${WFLOW_PATH}workflow_FooBar.py"
export LEM_HELPFILE="${WFLOW_PATH}workflow_FooBar.md"
export LEM_INPUT="${WFLOW_PATH}workflow_FooBar.yml"

echo "You will use workflow $LEM_WORKFLOW."
echo "Machine configuration is at $LEM_MACHINE_FILE."

function lemfoobar_input () {
 echo "Copy workflow FooBar input file in this directory... "
 \cp $LEM_INPUT .

}
echo " - lemfoobar_input to get a default input file"

function lemfoobar_run () {
 echo "lemmings run --inputfile $1 --machine-file $LEM_MACHINE_FILE
$LEM_WORKFLOW "
 lemmings run --inputfile $1 --machine-file $LEM_MACHINE_FILE
$LEM_WORKFLOW
}
echo " - lemfoobar_run myinput.yml to start your FRT workflow"

function lemfoobar_status {
 echo "lemmings status --progress"
 lemmings status --progress
}
echo " - lemfoobar_status to get a status of the last workflow, running or
not."

function lemfoobar_help () {
 cat $LEM_HELPFILE
}
echo " - lemfoobar_help to read about the FRT workflow requirements and
behavior"

function lemfoobar_kill {
 echo "lemmings kill --machine-file $LEM_MACHINE_FILE"
 lemmings kill --machine-file $LEM_MACHINE_FILE
}
echo " - lemfoobar_kill to kill your current workflow."

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 13 of 15

3.2.8 Container issues
Containers, such as Singularity Containers, offer a means to maintain a stable execution
environment that can be reproduced across various machines. However, when integrated into
workflows, a challenge arises. Containers are typically built on a machine different from that
of the workflow creators and lack access to local job submission commands. Addressing this
issue requires collaboration with the local IT team to adapt containers, potentially delaying the
solution's availability.

3.3 Automatic static mesh refinement
Meshing is an important first step in CFD, where the complex object to be modelled is
converted into a mesh of well-defined cells where the governing physical equations can be
applied, allowing the solver to simulate the physical behaviour. The traditional method of
generating a mesh involves initially generating a final-sized mesh, then refining it iteratively
by running simulations using that final-sized mesh. Once the mesh has been sufficiently refined
it can be then used in production simulations.
Unfortunately, this method is no longer viable at the exascale level. Using many runs at the
final mesh size is too expensive. Therefore, a different method is required. In order to generate
a mesh suitable for exascale at an appropriate cost, it is necessary to use an initial mesh that is
significantly smaller than the final-sized mesh desired, and iteratively increase the mesh size as
more information from simulations are obtained. For each mesh size a simulation will give
more information on where the mesh should be refined. When successful this process would
provide sufficiently good mesh for the final simulations at a controlled cost.
Note unlike Dynamic Mesh Adaptation, this process discards the simulation history, and retains
only the final mesh and solution. Indeed, there are theoretical open issues with high fidelity
simulations obtained on a moving mesh, so to stay on the safe side this workflow is an
Automated Static Mesh Refinement (ASMR).
The initial goal of this work is to show that it is possible to replace the domain knowledge
needed to create a mesh of sufficient quality with mechanical iterative process. A secondary
goal is to demonstrate the mesh generation procedure that can reliably produce a stable grid
with more than one billon cells. It is also important to understand the most efficient way to
produce the grids, i.e., is it better to use many small mesh refinements or aim for fewer but
larger refinements?
Initial runs using ASMR, the CFD code AVBP have been completed using EXCELLERAT use
case 2 (hydrogen combustion for propulsion). The ASMR runs have to date produced
acceptable meshes for industrial configurations. To date meshes of up to 50 million cells have
been generated using this method, and these meshes are currently being reviewed to ensure that
they are high enough quality.
In order to hit the target of generating a mesh large enough for exascale applications i.e., of
around a billion points, the workflow must be adapted to use parallel mesh development. An
example of ASMR is shown in Figure 4, where the initial mesh of 2.8 million cells is in several
stages into a mesh of 46 million cells.

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 14 of 15

Figure 4: Figure showing how a mesh is automatically refined using mesh adaptation with the ASMR

workflow. The configuration is an academic Hydrogen Burner (TUB burner). Our final goal is the
generation of a 1 billion cell mesh in a single workflow.

4 Conclusions
In-situ visualisation is required to be able to perform CFD simulations at exascale, as it removes
the need for very large amounts of IO and storage that a traditional workflow would require.
Initial work on connecting the CFD code Alya with the visualisation software Vistle has been
completed, and the first results obtained using a Taylor-Green Vortex as the input. Future work
following up this successful start using more scientifically relevant input is planned.
Work on optimising and simplifying workflows has also been completed, with a significant
number of recommendations made on how workflows should be organised and optimised.
Further analysis will be undertaken as future work.
Initial work on ASMR has also been completed, successfully generating meshes with up to 50
million cells. Work is ongoing to verify the meshes created are of sufficient quality and to
produce larger meshes.

Public
© 2023 Members of the EXCELLERAT P2 Consortium

Project 101092621 EXCELLERAT P2 Deliverable D4.1 Page 15 of 15

5 References
[1] Lemmings, https://lemmings.readthedocs.io/en/latest/
[2] SENSEI, https://sensei-insitu.org/
[3] Vistle, https://vistle.io/
[4] Nek5000, https://nek5000.mcs.anl.gov/
[5] Alya, https://www.bsc.es/research-development/research-areas/engineering-

simulations/alya-high-performance-computational
[6] CMAKE, https://cmake.org/
[7] Neko, https://neko.cfd
[8] Data Management Platform, https://services.excellerat.eu/viewcode/9
[9] Safran Group, https://www.safran-group.com/
[10] Lemmings public repository,

https://gitlab.com/cerfacs/lemmings//tree/master/src/lemmings/sandbox
[11] AVBP, https://www.cerfacs.fr/avbp7x/

https://lemmings.readthedocs.io/en/latest/
https://sensei-insitu.org/
https://vistle.io/
https://nek5000.mcs.anl.gov/
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://cmake.org/
https://neko.cfd/
https://services.excellerat.eu/viewcode/9
https://www.safran-group.com/
https://gitlab.com/cerfacs/lemmings/tree/master/src/lemmings/sandbox
https://www.cerfacs.fr/avbp7x/

	1 Introduction
	2 In-situ Visualisation
	3 Homogenisation/Standardisation of HPC Workflows
	3.1 Tools for Workflow Development
	3.1.1 Lemmings
	3.1.2 Scales

	3.2 Recommendations
	3.2.1 Unified Chronological logging
	3.2.2 A Unique Identifier for workflow instances
	3.2.3 No File Movement
	3.2.4 Version and Document the Workflow
	3.2.5 A Sandbox Scheduler
	3.2.6 A mock-up Solver
	3.2.7 End User Commands
	3.2.8 Container issues

	3.3 Automatic static mesh refinement

	4 Conclusions
	5 References

