HORIZON-EUROHPC-JU-2021-COE-01

_
B =
"a*3i-EXCELLERAT P2

The European Centre of Excellence for Engineering
Applications

Project Number: 101092621

D3.2 First Updated Report on Exa-Enabling
Methodologies

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

¥
¥ oy ¥

The EXCELLERAT P2 project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 101092621. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and

—— * * —

||

—_———

L

* *
* * -
% *

. =

Germany, Italy, Slovenia, Spain, Sweden, and France.

Work Package: WP3 Exa-HPC Methodologies and Technologies
Author(s): Ansgar Niemoller, Matthias Meinke RWTH
Joeffrey Legaux, Mohamed Ghenai CERFACS
Michael Wagner DLR
Tufan Arslan, Herbert Owen BSC
Matic Brank UL
Francesco Salvadore CINECA
Sergio Pirozzoli, Giulio Soldati URMLS
Mattia Paladino E4
Roberto Rocco E4
Davide Padeletti, Gregor Weiss USTUTT
Tuan Anh Dao KTH
Alexis Laplanche, SiPearl
Etienne Renault
Approved by Executive Centre Management 27-06-2025
Reviewer Florent Duchaine CERFACS
Reviewer Janez Povh UL
Bisvs;mination Public
Date Author Comments Version | Status
21-05-2025 Tufan Arslan, First draft V0.1 Draft
Herbert Owen
24-06-2025 Tufan Arslan, Second draft for final check | V0.2 Draft
Alexis Laplanche,
Etienne Renault
27-06-2025 Alexis Laplanche, | Final version V1.0 Final
Etienne Renault

Project 101092621

EXCELLERAT P2 Deliverable D3.2

Page 2 of 54

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

List of abbreviations

ADR
ALCF
AMD
APU

BiCGSTAB

BMBF
BSC
CAA
CE

CERFACS
CFD

CG
CGNS
CINECA
CoE
CPU
CRM
CSR
DDR
DG

DLR
DMR
DoA
DoF
DSL
EdF R&D
FLOPs
GCD
GMRES
GPU
HBM
HIP
HLRS
HPC

/0
ITER
KTH
LES

MPI
NASA
NCCL
OpenACC

Project 101092621

Advection-Diffusion-Reaction

Argonne Leadership Computing Facility
Advanced Micro Devices

Accelerated Processing Unit

Biconjugate Gradient Stabilized Method
Bundesministerium fiir Bildung und Forschung
Barcelona Supercomputing Center
Computational Aeroacoustic

Computational Efficiency
Centre Européen de Recherche et de Formation Avancée en Calcule
Scientifique

Computational Fluid Dynamics

Conjugate Gradient

CFD General Notation System

CINECA Consortium

Center of Excellence

Central Processing Unit

Common Research Model

Compressed Sparse Row

Double Data Rate

Discontinuous Galerkin

German Aerospace Center

Dynamic Malleability Runtime

Description of the Action

Degree of Freedom

Domain Specific Language

Energie de France research & development
Floating Point Operations Per Second

Graphics Compute Die

Generalized Minimal Residual Method

Graphical Processor Unit

High Bandwidth Memory
Heterogeneous-computing Interface for Portability
High-Performance Computing Center Stuttgart
High Performance Computing

Input - Output

International Thermonuclear Experimental Reactor
Kungliga Tekniska hogskolan, Royal Institute of Technology
Large-Eddy Simulation

Message Passing Interface

National Aeronautics and Space Administration
NVIDIA Collective Communications Library
Open Accelerators (directive-based parallel programming model)

EXCELLERAT P2 Deliverable D3.2

Page 3 of 54

OpenCL
OpenMP
OpenMPI
PDE

PU
RAM
RANS
RCB
RWTH
SAneg
SIMD
STL
SVE
TEBE
TFLOP/s
UC

UL
URMLS
USTUTT
WENO
WEST

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Open Computing Language

Open Multi-Processing

Open Message Passing Interface

Partial Differencial Equation

Processing Unit

Random Access Memory

Reynolds-averaged Navier-Stokes

Recursive Coordinate Bisection
Rheinisch-Westfilische Technische Hochschule

Spalart-Allmaras one-equation turbulence model in its negative form

Single Intruction Multiple Data

Standard Template Library (C++)
Scalable Vector Extension

TEsting Benchmarking Engineering

Tera Floating Point Operations per second
Use Case

University of Ljubljana

University of Rome LA SAPIENZA
University of Stuttgart

Weighted Essentially Non-Oscillatory
Tungsten (W) Environment in Steady-state Tokamak

Project 101092621 EXCELLERAT P2 Deliverable D3.2

Page 4 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Executive Summary

DLR has continued to improve performance and scalability of the Computational Fluid
Dynamics (CFD) software CODA, the FlowSimulator framework and the sparse linear systems
solver Spliss. This includes an evaluation of CODA’s improved scalability, of the newly
introduced mixed-precision mode in Spliss, and of the newly developed hierarchical mesh
partition method in FlowSimulator. Next to that CODA’s containerised delivery was studied
and CODA was ported and tested on various upcoming Central Processing Unit (CPU) and
Graphics Processing Unit (GPU) architectures.

CERFACS has worked on expanding the existing GPU port of AVBP in terms of use cases
coverage, supported architectures (with a strong focus on Advanced Micro Devices (AMD)

GPUs) and general optimisation of the structure of the code to make it more efficient when
offloaded to GPUs.

RWTH continued to improve the performance and parallel efficiency for large-scale
multiphysics simulations with the code m-AIA. A large-scale use case has been executed with
high efficiency on the 4096 compute nodes demonstrating exascale readiness of the m-AIA
code on CPU-based High-Performance Computing (HPC) system. Porting efforts to adapt m-
AIA to GPU/Accelerated Processing Unit (APU) architectures are advancing at a high pace.
Benchmarking on four EuroHPC systems has been carried out.

BSC has focused on the GPU offloading of Alya using directive-based programming with
OpenACC to minimise code changes while maintaining a unified codebase for both CPU and
GPU targets. A first version of the code that can run incompressible Navier-Stokes problems
fully on the GPU was obtained. The GPU performance was analysed and improved. In task 3.4,
we pursued further work on the integration of Alya with the malleability framework Dynamic
Malleability Runtime (DMR) to enable physics simulations which can resize at runtime to
operate inside a desired efficiency range.

CINECA and URMLS have completed the rewriting of the FLEW code as part of the
STREAmMS-2 code. STREAmS-2 is based on an object-oriented architecture with support for
different computational backends. The code for the different computational backends is
generated through an in-house portability library that has been extended to integrate the new
code features. The code has been benchmarked on different HPC systems with special focus on
Leonardo and LUMI clusters. An initial pipeline for Continuous Benchmarking was also
implemented. Several features for workflow improvement in exascale perspective were also
implemented.

The focus of Neko was on improving the compressible solver and enabling efficient GPU-to-
GPU communication using the NCCL library. Strong scaling tests on AMD and NVIDIA GPUs
showed good parallel efficiency. Neko also benefited from vectorisation optimisations and
memory access tuning, which demonstrated strong performance potential on architectures with
high-bandwidth memory.

During the period, the UL team extended the Further Application FA-1 case to use distributed
memory architectures by porting L2G and Raysect with OpenMPI library. L2G uses hybrid
parallelisation with OpenMPI and OpenMP, and Raysect employs OpenMPI and Python
multiprocessing. Strong scaling benchmarks were performed for all three codes (focusing on
ITER and WEST reactor scenarios). Some scalability is observed, but performance is not
optimal and the future work will focus on the optimisation improvement.

Preliminary results on co-design indicate that High Bandwidth Memory (HBM) can
significantly benefit certain codes within EXCELLERAT P2, particularly when combined with
Double Data Rate (DDR) memory on systems like Rhea. Ongoing and future work focuses on

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 5 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

code classification via Roofline analysis, with the goal of enabling targeted optimisations based
on performance profiles.

Task 3.3 focused on developing a unified testing platform for validation, deployment, and
benchmarking. Key efforts have included integrating tools from the CASTIEL 2 project for
Alya and AVBP codes and creating an automated testing pipeline for the previously
unsupported STREAmS application.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 6 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Table of Contents

EXECULIVE SUIMIMATYuviiiiiiiieciieceiie et ettt e et se e s tee e s aeeestseeessaaeessseesssseesnseeessseeensseeennsens 5
TabIE Of CONTENLS ...ttt ettt e b et saeenbe et e sbeeneas 7
TaDIE OFf FIGUIES ..eviieeieieecie ettt ettt e et e e et e e enaeesnbaeessseeennseeenseas 8
TaBIE OF TADLES ...cueeiietieieei ettt et st ettt 10
I INETOAUCTION ...ttt ettt ettt e e bt e e beesaeeenbeesaeeenbens 11
2 Task 3.1 Performance & Efficiency Engineeringccoeceevieeiienieniiieniesieeeeeieeeens 12
2.1 (10 D 2 SRS SRORRSPSRR 13
2.2 AVBP ettt 14
G T 11 B 2N SRS 15
24 Alya and SOA2dcooieeiieiieiiee e ettt 16
2.5 INEKO ettt ettt st ettt e be et ebee s 19
2.6 STREAMS ..ottt ettt et sttt et nbe e 20
2.7 L2G, OpenFOAM, RAYSECL.....cceiiiiiiiieeiiiiiee ettt et e e e e e s e e e 25
3 Task 3.2: Co-design lab for emerging technologies...........cccoevieriieiiieniiienieniieieeieee 28
3.1 LT 0T B ICT] ¥y s DR 28
3.2 OPENFOAM ...ttt ettt et e et e et essabee e sbeeeneee 29
33 INEKO ettt ettt ettt et e be et ebee 32
3.4 MFATA et ettt st 35
3.5 STREAMS ...ttt ettt ettt be et eeneenseenee e 37
3.6 Co-Design Service for eXaSim ProjeCt........ccccuieriierieeiiienieeieeniieeieeneesreeneeeeeeenne 39
4 Task 3.3: Testing, Validation and Deployment............ccceeevieeiiieeiiiieiieecieeeiee e 41
4.1 STREAmMS automatic testing, validation and benchmarking............cc.cccccevienennene. 42
5 Task 3.4: Exascale ENGINEETINGcccveeeiiieiiiieiie ettt evee e e eesaee e 44
5.1 (10 D 2 SRS PRRRSPSR 44
5.2 AVBP et 44
5.3 AT ettt sttt et n et nteeaee et enne e 46
54 ALYA e ettt ettt 48
5.5 STREAMS ...ttt ettt ettt et et e b enaeeneenaeenee e 51
0 CONCIUSION. ...ttt et sttt ettt et s bt et et e b et eanenas 53
T RELETEICES ...ttt ettt et e a bttt e s st e et esab e e bt e saeeeteens 54

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 7 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Table of Figures
Figure 1: Scalability of the AVBP code on NVIDIA V100 and A100.ccceevevveeerieennnennee. 14
Figure 2: AVBP performance relative to A30 card on 3 reference configurations.................. 15
Figure 3: m-AIA DG benchmark with 1 billion DOF: comparison of initial parallel-stl
ported and rewritten GPU/APU kernels on Hunter............ccccocceeviinciiinienceenienieeeeee, 16
Figure 4: Speedups of key components in the Alya-ADR simulation across varying mesh
sizes and VECTOR_SIZE configurations.c.cccveeueerieriieniienieeriie e eiee e 18
Figure 5: Performance analysis charts generated with Rooster, tracking NASTIN's GPU
performance for the Bolund 32M elements Case..........ccecueevuierieeniienieeniienieeieeeie e 19
Figure 6: Strong scaling in the newly implemented compressible solver in Neko. 20
Figure 7: Strong scaling in the newly implemented compressible solver in Neko. 20

Figure 8: Elapsed time comparison of the reference case (4096 x 286 x 276 grid) using one
computing node for each system considered. Both central and WENO results are
reported. Note that CPU results are multiplied by a factor 20 for readability. 23

Figure 9: Hierarchical roofline analysis for HBM and L1 memory levels: FLOPs per
second (vertical axis) vs Arithmetic Intensity (horizontal axis). Significant kernels
are considered comparing HBM values (empty markers) vs L1 values (filled markers).
Three architectures are considered, namely NVIDIA A100 GPU (left), AMD

MI250X GCD (middle), and Intel 1550 Tile (right).cccoeueeriieiiiiniieiieiecieeeeeeee 24
Figure 10: Weak scalability results for Leonardo-Booster and LUMI-G systems. 25
Figure 11: (left) table of thread numbers vs. time (right) Strong scaling plot for L2G (blue

line) with theoretical scaling (dashed orange 1iNe)..........ccceeevviieiiiieiiiieiiiece e 26
Figure 12: (left) table of thread numbers vs. time (right) Strong scaling plot for

OpenFOAM (blue line) with theoretical scaling (dashed orange line).cccceeenneen. 26
Figure 13: (left) table of thread numbers vs. time (right) Strong scaling plot for Raysect

(blue line) with theoretical scaling (dashed orange line).cccceeevieriiieriienciieniienene, 27
Figure 14: ARM-based CPU equipped with both HBM and DDR memories. 28
Figure 15: OpenFOAM runtime and SCaling............cceeriieriiiniieniieniieiieeie et 31
Figure 16: Neko opr Kernels runtime.cooveeeiiieriiieiieeeeiee ettt 34
Figure 17: Neko bk5 Memory Consumption projection.cceeecveerueereeerueenveenieesveeneennnes 34
Figure 18: Neko scaling of all miniapp/cases on Graviton 3.cccceeevveeecieencneeesieeesnee e 35
Figure 19: Runtime of all implementations on Graviton3.cccceeevienienenienieenenieneeene 36
Figure 20: Speedup from Sequential on SapphireRapids with HBM or DDR......................... 37
Figure 21: STREAMS average iteration time.ccceecveeriieeiieniienieeniieeieeiee e esiee e eeee e 38
Figure 22: STREAmMS Speedup from sequential on Graviton 3.cccceeveveenciieenciieenneeenne, 39
Figure 23: FVOPS for different case sizes on GH200 (left) and MI300A (right). 40
Figure 24: Wall time for initial case setup for different case Sizes.ccceeeveercrveercrieenneenne. 41
Figure 25: Example input section defining strong and weak scaling using TEBE

DENCAMAVKING TOOL. ..ottt e et e e s aee e esree e naeeens 43
Figure 26: Strong scaling of AVBP on the ADASTRA system using 4 Mi250 per node.

Nonreactive WINAfarm CASE.couuiiiuiiiiiiiieiie ettt e 45
Figure 27: Scaling of AVBP on the ADASTRA system using 4 MI300A per node +

comparison with CERFACS’ A30 nodes. H2 burner reactive case.cccceeveeveveerennennns 46
Figure 28: Strong (left) and weak (right) scalings for coupled FV-DG m-AIA benchmarks

on different EuroHPC CPU based SYStEMS.cccuviiiiiieiiiieiie et siee e ens 47
Figure 29: Comparison of workload distribution of large-scale coupled CFD-CAA

simulation on 256 and 4096 Hawk nOdes.ccceeiiiiiiiiiiniiiiieceeeee e 48

Figure 30: Scalability of large-scale CFD and coupled CFD-CAA simulations on Hawk...... 48

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 8 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Figure 31: Optimizing the resources. Workflow for elastic computing of CFD simulations,
involving different codes and libraries: Alya (CFD), TALP (efficiency measures) and

COMPSSs (€1astic COMPULINEZ). ...eeerurieeiiieeiiieeiieeeiieesieeesieeesreeesaeeessaeessseeessseeessseeessseenns 49
Figure 32: Workflow using Alya and DMR to control the communication efficiency. 49
Figure 33: Dynamic resizing of Alya using DMR.ccccooiiiiniiieeee e 51

Figure 34: Evolution of the distribution of cores to run 6 concurrent jobs. The
discontinuous dark line shows the total amount of resources used while maintaining

the CE 1n the target TaNGE.c.ceeveeiiiiiieeiieie ettt ettt et te et sebeebeessneeneea 51

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 9 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Table of Tables
Table 1: Systems, environments and STREAmS backends where performance was

TNCASUTE. ...ttt ettt ettt s bt b et s bt e bt et esbe e bt e st e sbeebesatesbeennea 22
Table 2: OpenFOAM Identity Card.ccceeeiiieeiiieeiiieeiee ettt seree e 30
Table 3: Neko 1dentity Card.cccieeiieiiiiiieeiiee ettt ettt st e e e s 33
Table 4: M-ATA 1dentity Card.c.ccoocvieeiiiieiiieeee e e e e e e 36
Table 5: STREAMS 1dentity Card..........cceeriieiiiiniieiieiie ettt et 38
Table 6: Deployment summary of STREAmS on the different HPC resources tested............ 42

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 10 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

1 Introduction

Work Package (WP) 3 is intended to support all the algorithmic and computational
developments of the different methodologies defined to execute the use cases. It is focused on
the appropriate use of software and hardware so the use cases can be executed with exascale
workflows. In the context of heterogeneous systems, the best mapping of algorithms and
architectures will be analysed in detail, considering both computing time and energy costs. The
research and development carried out in this work package will be crystallised into exascale-
type workflows for the reference applications. It includes code developments and optimisations
of the simulation elements to exploit all levels of parallelism from heterogeneous HPC systems
and testing on emerging technologies and cooperation with vendors for co-design. Considering
the diversity of use cases in terms of computational methods, discretisation strategies, HPC
algorithms and simulation workflows, the activities are grouped into four tasks.

This document reports advances on Exascale enabling methodologies for all codes in the
EXCELLERAT P2 project. The report includes advances in Tasks 3.1, 3.3 and 3.4 as
established in the Grant Agreement. The first task focuses on the optimisation of the
computational efficiency of the simulation methodologies employed in the use case at inter-
and intra-node levels. Advances in code scalability, code optimisation and porting to GPU are
reported. Task 3.2 focus on co-design (e.g., porting and optimizing) activities for (1) the
upcoming Sipearl Rhea CPU, based on ARM micro-architecture, and (2) the Grace-Hopper 200
CPU-GPU and AMD MI300 APU in collaboration with the exaSim project. For Task 3.3
progress on Testing, Validation and Deployment is presented. Task 3.4 on Exascale
Engineering deals with the specific developments required to extend the simulations workflows
from Task 3.1 to achieve the large-scale readiness required in exascale simulations.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 11 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

2 Task 3.1 Performance & Efficiency Engineering

This task is focused on the optimisation of the computational efficiency of the simulation
methodologies employed in the use case at inter- and intra-node levels. It includes the
combination of different parallelisation strategies based on distributed and shared memory,
stream processing on GPU accelerators and efficient usage of hierarchical memory systems.
Load balancing and communication/synchronisation reduction will be conducted in
multiphysics applications and workflows including data-driven methods with Artificial
Intelligence and multi-disciplinary analysis and optimisation. Advanced features of Message
Passing Interface (MPI) such as non-blocking collectives, fault tolerance and remote memory
access will be considered for some use cases. Finally, specific algorithmic modifications and
communication strategies will be explored in the workflows and mapped to the supercomputing
architectures. Optimisations considering both the algorithmic design and the implementation
strategy such as energy efficiency and performance portability will be pursued.

The trend of HPC architectures in recent years and in particular the increasingly pervasive
presence of accelerated architectures represents a great opportunity for achieving simulation
objectives of great impact on both research and engineering application. To seize these
opportunities, however, it is necessary to have software capable of adequately exploiting the
hardware resources available. In this sense, the traditional approach to programming, which
sees the compiler and the operating system as capable of providing a simple abstraction of the
hardware to the developer, is in crisis. In HPC, software architects and developers are supposed
to have a substantial knowledge of target hardware and program from that perspective using
the adequate programming paradigms.

In a nutshell, this type of interaction can be framed within three main performance-oriented
objectives:
1. parallelisation-oriented software design starting from the choice of algorithms that are
or remain particularly efficient if parallelised.
2. implementation of algorithms “exposing” the parallel potential as much as possible.
3. choice of suitable programming paradigms to best use the available hardware.

From the point of view 1, particularly in the field of Computational fluid dynamics (CFD), the
issues have been the subject of reflection for decades now, even if the balances of the parameters
in the field are constantly evolving and can lead to changing conclusions. For example, an
implicit algorithm for temporal evolution allows the use of a larger integration step, but the
possible parallelisation methods are less efficient. On the contrary, an explicit algorithm,
penalised by a very limited time step, can however be overall better due to its optimal versatility
from a parallel calculation perspective.

From the point of view 2, it is necessary to remember that the same algorithm can be
implemented in different ways and these implementation choices can significantly affect the
compiler's ability to translate the source into efficient and truly parallel machine code. The
conservative finite difference schemes used in FLEW can be implemented in a more compact,
more efficient way in serial optics, or in a more extensive way, which however turns out to be
more efficient in parallel optics.

What is expressed in points 1 and 2 strongly depends on the particular type of hardware or
generation of hardware considered, but there are principles to be respected that are generally
valid from the perspective of the current most widespread HPC architectures. From the point
of view 3, however, the adaptation of the code requires, in addition to a very high commitment,

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 12 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

adaptability over time to the different parallel programming paradigms which can be
substantially different. We distinguish four types of paradigms:

e vendor-specific: such as CUDA for NVIDIA GPUs or HIP for AMD GPUs

e standardised: such as OpenCL, OpenMP, OpenACC, SYCL

e intrinsic of the languages: C++ STL, Fortran do concurrent

e cxternal: such as, for example, Legion, Kokkos, Raja
Each paradigm has advantages and disadvantages in terms of performance, maintainability,
readability, portability and other relevant characteristics of the software that can be produced.
Choosing one paradigm over another depends on the specific objectives of a certain porting
activity.

2.1 CoDA

During the reporting period, we achieved three major tasks: First, we evaluated the scalability
improvements in CODA and FlowSimulator and compared the scalability to the baseline
recorded in the previous reporting period. Second, we highlighted the benefits of the newly
introduced mixed-precision mode in the sparse linear solver Spliss. Third, we extended the set
of tested and supported CPU and GPU architectures.

First, we focused on evaluating the scalability of CODA on CARA with Use Case UC-1. CARA
is a CPU system based on the AMD Naples architecture. The use case solves the Reynolds-
averaged Navier-Stokes equations (RANS) with a Spalart-Allmaras turbulence model in its
negative form (SA-neg). The use case runs on an unstructured mesh from the NASA Common
Research Model (CRM) with about 5 million points and 24 million volume elements. The mesh
is a rather small mesh, which has been chosen for a strong scalability analysis (fixed problem
size) of CODA at currently available HPC systems. Production meshes are typically at least 10
times larger and accordingly achieve comparable efficiency on much higher scales. For the
weak scalability analysis (fixed workload per core), we use different mesh sizes from the CRM
mesh family ranging from 3 to 192 million elements and solve the use case with an according
number of cores. The evaluation shows a significant improvement of CODA’s scalability in
comparison to the baseline from the start of the project. UC-1 achieves about 83% parallel
efficiency (vs. 61% baseline) on the largest available partition on CARA with 512 nodes and
32,768 cores in the strong-scaling scenario. In the weak-scaling scenario, a parallel efficiency
0f' 96% (vs. 72% baseline) was achieved on 32,768 cores.

Second, in addition to improvements in scalability, optimisations in compute speed were also
considered. In particular, we evaluated the use of mixed-precision floating point calculations in
the linear solver Spliss. A typical solver stack in Spliss that is used by CODA is, for example,
GMRES (generalised minimal residual method) with Jacobi preconditioning. In this case, in
mixed-precision mode the inner loops (Jacobi preconditioner) in the linear solver are computed
with single floating-point precision (32 bits) while the outer loops (GMRES) are still computed
with double floating-point precision (64 bits). The advantages are, on the one hand, the
utilisation of twice the number of entries per SIMD instruction (for computed-bound sections)
and the halving of the amount of data to be loaded from the memory (for memory-bound
section). As a result, the calculation time of CODA could be accelerated by up to 72%. The
acceleration depends on the test case and the ratio of inner to outer loops. On average, users
report an acceleration of around 30% for the entire simulation.

Third, in a continuous effort to test and evaluate CODA and FlowSimulator on new CPU
architectures, so far, the following systems have been studied with UC-1:

e AMD: Zenl, Zen2, Zen3, Zend
e Intel: Saphire Rapids, Icelake
e ARM-based: Nvidia Grace, Graviton2, Graviton 3, Graviton 4

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 13 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

e GPU: Nvidia A100, Nvidia H1I00, AMD Mi210

For the evaluation, standardised benchmarks and a containerised version of CODA and
FlowSimulator (see Task 3.4), including the use case UC-1, were used. These measurements
allow adapting CODA to new architectures during the early-access phase and evaluate which
systems offer best performance ahead of deployment to new full-scale HPC systems as well as
provide valuable insight for designing DLR’s own future HPC systems.

2.2 AVBP

Use case UC2 (hydrogen combustion) workflows requires two main parallel components on
the road to exascale. First, an exascale-ready AVBP. This is handled in Task 3.4 with the
portability of the code for AMD GPUs. Performance optimisation and efficiency of the code
will be addressed in the next phases. Second, a highly parallel and efficient mesh adaptation
component. With this in mind, the first period of EXCELLERAT P2 has focused on the
robustness and reproducibility of the parallel mesh refinement library Treeadapt [1].

The library has been extended and is now known as KalpaTARU [2]. KalpaTARU now focuses
on using PTScotch [3] as its underlying partitioning library instead of PARMetis [4] which
exhibited technical and licensing issues. KalpaTARU now also supports the CGNS format for
meshes and provides interoperability with AVBP’s format. Specific work has been done to
support periodic meshes which are a frequent occurrence in our complex simulations.

The scalability of AVBP on GPU was previously tested at large scale on V100 and A100 cards
as shown in Figure 1 notably thanks to a JUWELS Booster access.

M Vv100-16Gb
A100-40Gb

5 I
0 . I I
128 256 512

1024

Acceleration
N w £

-

GPUs
Figure 1: Scalability of the AVBP code on NVIDIA V100 and A100.

Acquisition of 4 H100 nodes at CERFACS allowed to assess the performance of AVBP on this
new architecture. It required to move to more recent versions (>= 23.11) of the NVHPC
compiler, which introduced new bugs. Corrections by Nvidia and workarounds on our side
allowed us to successfully use AVBP with NVHPC 24.1.

The benchmarks showed consistent behaviour with previous observations: since AVBP is
largely memory-bound on GPUs, the performance ratio very closely matches the memory
bandwidth ratios of the various GPUs (Figure 2).

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 14 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

25
& m Memory bandwidth
m3Mecells / 1 GPU
| m 20M cells / 4 GPUs
m 60M cells / 4 GPUs
0
Al100

H100

L%}

s
(4]

[y

wu

Figure 2: AVBP performance relative to A30 card on 3 reference configurations.

Codemetrics [5] tools developed in WP4 were applied in order to extend the GPU coverage
inside AVBP, both in highlighting parts of the codebase that should be treated when extending
the coverage, and in providing performance insights through the collection and analysis of job
data points to ensure non-regression of the performance when maintaining/extending the GPU
port.

The perimeter of AVBP on GPU has notably been enlarged by making the secondary lagrangian
solver implementation hybrid, so that it can be used on CPU while the main Eulerian solver
runs on GPU. A performance study campaign through the POP3 CoE [6] has started to assess
the relevance of conducting an actual GPU port of the lagrangian solver.

General efforts have started in trying to understand the performance limitations of AVBP on
GPUs. A major characteristic that has been identified is the fact that it is essentially memory-
bound. This seems to come down from the fact that the code is structured in many small
subroutines, leading in turn to many small GPU kernels with low arithmetic intensity.
Experiments in rewriting the gradient computation part of AVBP (which represents a small
amount of code but takes around 10% of execution time) as a single fused kernel could lead to
2 to 4 times faster GPU execution on this specific section. Further work will assess how we
might generalise such deep transformations into the whole code base.

2.3 m-AIA

During the first project year RWTH significantly improved the performance and parallel
efficiency of m-AIA for large-scale multiphysics simulations. Scaling an aeroacoustics
application to the full Hawk HPC system of about 500,000 compute cores allowed the
identification of performance issues which were not visible for smaller scale runs or less
complex simulation setups. For example, a critical issue related to a specific inter-process
communication was discovered and resolved. Efforts also targeted improvements of the
dynamic load balancing approach for coupled CFD/CAA simulations and issues linked to the
CPU power management as well as a workaround were identified. Strong scaling tests for
benchmark cases on Hawk showed excellent parallel efficiency and superlinear speedups for
m-AIA on up to 4096 Hawk nodes.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 15 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Apart from continuous improvement of the multiphysics simulation framework m-AIA, e.g.,
related to the dynamic load balancing approach, a key focus initiated during the second project
year involved porting activities aimed at adapting the complete code to GPU/APU architectures
to facilitate future use case executions and runs of the envisioned optimisation workflow on
different types of HPC hardware. Apart from transforming code loops to C++ parallel-stl
versions, the current improvements including code restructuring, clean-up and memory
reduction are expected to enhance the execution efficiency of m-AIA not only on GPU/APU-
based systems but also on traditional CPU-based HPC platforms. For the present use case, UC-
3, the FV-CFD and the DG-CAA solver of m-AIA and their respective coupling need to be
ported. Since the DG method is based on a polynomial solution representation in each cell or
element of the grid, with a potentially high number of degrees of freedom (DOF) inside a single
element, compute kernels need to be rewritten to loop over individual nodes instead of full
elements. Through this approach the high computational effort required for each element can
be split into small parts to be distributed among many threads. Figure 3 compares the
performance in achievable time steps per second of the initially ported parallel-stl loops
iterating over elements and surfaces to a first version of the rewritten kernels looping over
individual nodes. The benchmark case consists of approx. 1 billion DOF and is executed on the
AMD MI300A based Hunter HPC system installed at HLRS with each node equipped with 4
MI-300A APUs. As evident, the changes to the loop structures result in a speedup of a factor
of 6, while for 64 nodes, i.e., 256 APUs still a parallel efficiency of about 70% is achieved.
The current main objective is to finalise the GPU/APU porting of the coupled CFD/CAA
solvers. Based on an initial version supporting more complex simulations the performance will
be further optimised.

Hunter: m-AlA DG benchmark 10° DOF (p=3)

100 3 T T T T T T 3
: linear]
-3 initial ported kernels
e [- -0 - rewritten GPU kernels
3 10F
(0] E
2 L
(2]
Q.
2
2 4L
£ E
01 L 1 1 L 1 1
8 16 32 64 128 256
Number of APUs

Figure 3: m-AIA DG benchmark with 1 billion DOF: comparison of initial parallel-stl ported and
rewritten GPU/APU kernels on Hunter.

2.4 Alya and Sod2d

BSC is currently working with two codes: Alya, a multiphysics finite element (low order) code
that has been developed since the beginning of BSC in 2006 and Sod2d, a spectral element CFD
code that started as a high order alternative of Alya a couple of years ago but is now developed
independently. One of the key advantages of Sod2d being a separate code is that it is completely
open source, which is not the case with Alya. Sod2d can be used as a library from within Alya.
Sod2d has been designed from scratch to work fully on GPUs while Alya which started as a
CPU code is currently being ported to GPUs.

While in D3.1 [7] we put a strong emphasis on the work done with Sod2d, due to space
limitations we will now focus more on the GPU porting and performance optimisation of Alya.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 16 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

The BSC has led the GPU offloading of the Alya simulation framework using a unified code
strategy to preserve both maintainability and performance portability. This effort followed a
progressive approach: prototyping on miniapps, refinement within the modular Alya Library,
and integration into production-grade Alya.

The adopted GPU offloading strategy focuses on using directive-based programming with
OpenACC to minimise code changes while maintaining a unified codebase for both CPU and
GPU targets. A key design principle was ensuring that all offloading decisions preserved
existing CPU performance. Code vectorisation was adapted using a pre-processor-based
abstraction that automatically adjusts loop granularity for CPU and GPU architectures. GPU
memory management was aligned with CPU allocation flows to avoid costly transfers and
improve correctness. The work can be divided into three stages.

Stage 1: RHS Assembly Prototype — Nastin Miniapp

The first stage explored GPU offloading through the Nastin-Miniapp, a snippet of Alya’s
NASTIN module focused on the right-hand side assembly for the incompressible Navier—
Stokes equations. This mini-app removed complexities such as MPI, solvers, and external
dependencies, offering a clean environment to learn directive-based offloading and explore
optimisation strategies.

Optimisation work started by privatizing around 200 intermediate values per element, reducing
memory traffic and achieving a speedup by factor 6. Memory residency was extended across
timesteps to limit data movement, adding another 30% gain. Fixing loop bounds at compile
time for tetrahedral elements further improved performance by factor 3, although this limited
mesh flexibility.

Subsequent kernel profiling revealed memory bottlenecks and register pressure. Splitting the
main kernel into smaller units reduced these limitations, doubling execution speed in non-fixed
loop bounds configurations and significantly narrowing the performance gap between fixed and
general cases. OpenMP Offload implementations showed equivalent performance to
OpenACC.

Stage 2: Alya Library

Building on these findings, the second stage applied GPU offloading to the Alya Library, a
modular reimplementation of Alya using modern Fortran and object-oriented design. Although
still under development, the Alya Library offers a realistic testing ground with a structured
mesh generator for easily configuring problem size and evaluating GPU performance.

The Alya-ADR miniapp, built on this library, solves scalar advection-diffusion-reaction
equations using explicit and implicit time integration schemes. It simplified the physical model
by assuming constant properties and focused on testing matrix assembly, CSR matrices, and
GMRES solvers. Performance benchmarks showed that GPU acceleration was highly sensitive
to mesh size and vector chunk size, with optimal results achieved for large models and a vector
batch size of 512k elements. Solver stages benefited the most, although the pre-processing
phase remained a bottleneck due to its inherent sequential nature of Krylov subspace
orthogonalisation.

Further efforts focused on bottom-up integration of GPU memory management into the Alya
Library’s data structures, improving data lifetime handling and ensuring allocations and
deallocations on device mirrored host memory management. The integration was extended to
new solvers, such as CG and BiCGSTAB, and matrix formats, including COO and ELL.
Performance validation using a Laplacian problem confirmed that SpMV kernels dominated
execution time, and targeted optimisations such as switching to single precision, kernel
configuration tuning, and Cuthill-McKee reordering provided further gains. These results laid
the foundation for production-ready GPU execution.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 17 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

all assemble
d dim
] -
80 L —e— 2d
60 s 3d
] = P mode
g 501 = T —e— 128k
o e T T Lee 256K
| R
© :7 w512k
70 E L
M 4aM am 16M 32.8M 64M
nelem
solver_preprocess
dam
60 | 20 1 —e— 2d
*= 3d
T T 151
L] o
S S
10 A
80 4 54 o - .
M 4amM am 16M 32.8M 64AM
nelem
solver_solve
dim /.
401 801 —e— 2d .
o— 3d
% ol
] -
30 40 A /
L]
™ amM & 16M 32.8M 64M M 4am M 16M 32.8M BAM
nelem nelem

Figure 4: Speedups of key components in the Alya-ADR simulation across varying mesh sizes and
VECTOR_SIZE configurations.

Stage 3: Production Alya-KERNEL and Modules

The production version of Alya, composed of the KERNEL, KERMOD, and DOMAIN
modules, provides the foundation for physical models like NASTIN, CHEMIC, and EXMEDI.
GPU offloading in this final stage focused on porting critical computational routines, leaving
initialisation phases on the CPU. Despite its legacy design posing challenges for developers,
the production code’s simpler data structures facilitated compiler optimisations.

The GPU-optimized prototype of the NASTIN module, originally developed during the work
published in [8], was successfully integrated with the newly offloaded data structures and
solvers. This version solves the incompressible Navier—Stokes equations using a Large Eddy
Simulation turbulence model, an explicit momentum formulation with third-order Runge-Kutta
time integration, and a multi-step fractional step method for pressure-velocity coupling. Several
simplifications were introduced for more performance.

Optimisation efforts delivered significant performance improvements. Increasing the
VECTOR_SIZE parameter to 2048k reduced matrix assembly time by 40%. Cuthill-McKee
reordering improved memory access patterns, cutting the cost of sparse matrix-vector
multiplications by around 20%. Fine-tuning OpenACC kernel configurations and other efforts
further improved performance.

Compared to a full CPU node using 80 MPI processes, the complete simulation loop on a single
GPU achieved an acceleration by a factor 3. Matrix assembly showed the greatest speedup of
over 10x, and solver performed 2.5 times faster. These results demonstrate that GPU
acceleration already brings a substantial performance gain and ensures improved energy
efficiency, making it a viable and promising solution for production Alya users.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 18 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

These contributions were integrated into the main branch following continuous integration and
automated testing to ensure code stability and correctness. Performance monitoring was
introduced using Rooster, a tool that provides clear visual feedback on key performance
indicators and tracks the impact of code evolutions to ensure that future developments deliver
performance.

= bolund-32M - 110

1200 =& bolund-32M - 5/0

1000

average time (s)
©
2

@
=
=]

400

May 11 May 18 May 25 Junl
2025

date

"*%é dot 2

=]

spmv 2

solvers

Y
scatter &g
L
&=

¢

$§‘
&

Figure 5: Performance analysis charts generated with Rooster, tracking NASTIN's GPU performance for
the Bolund 32M elements case.

2.5 Neko

Work during this period focused on two areas: improving the compressible solver and
improving the communication between GPU-to-GPU on NVIDIA GPU clusters.

First, strong scaling tests were performed on the compressible solver using AMD MI250X and
NVIDIA GH200 GPUs. A fixed problem size was used while increasing the number of GPUs.
We have used a spatial discretisation using 60x60x60 7™-order elements, and a temporal
discretisation using the standard 4"-order explicit Runge-Kutta scheme. The test problem is the
compressible Taylor-Green vortex. Results show that Neko maintains good scaling efficiency
across both platforms, although the size of the benchmark is relatively small, only up to 4 nodes,
each node with § AMD MI250X or 4 NVIDIA GH200 GPUs (See Figure 6). This is currently
limited to the GH200 cluster that we are testing the code on.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 19 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Compute node: 8xMI250X AMD GPUs Compute node: 4xGH200 NVIDIA GPUs

| —e— Measured | 10-! —— Measured
| Ideal reference . Ideal reference

10-12 ¢
10-12
10— 14}

1014

Avg. time per timestep (s)
Avg. time per timestep (s)

10—1.6

1 2 4 1 2 4
Number of nodes Number of nodes

Figure 6: Strong scaling in the newly implemented compressible solver in Neko.

Separate strong scaling tests were performed on CPUs, comparing NVIDIA Grace CPUs and
HPE Cray CPUs. The results allow a direct comparison between CPU types and show how the
compressible solver performs on modern CPU-only systems (see Figure 7).

—e— NVIDIA Grace CPU Superchip
—=— AMD EPYC 7A53 64-Core
1006 Ideal reference

10°

Avg. time per timestep (s)

1070.5

1 2 4
Number of nodes

Figure 7: Strong scaling in the newly implemented compressible solver in Neko.

Second, support for the NCCL library was added to Neko. NCCL is now used as a backend for
gather-scatter operations and as an alternative option for collective communication. This new
feature can be enabled at compile time when targeting NVIDIA GPUs by adding the flag -
DHAVE NCCL=1. It improves communication performance of operations such as all-reduce or
broadcast by using hardware-accelerated GPU-to-GPU transfers.

2.6 STREAmS

STREAmMS has been upgraded to version 2.1, and that version has also been published online
open-source at https://github.com/STREAmMS-CFD/STREAmMS-2, as it was previously
decided within the EXCELLERAT project but well before the final planned timeline. The
current version of the solver incorporates all the features of the FLEW [9] code for curvilinear
grid support. In addition, new features have been implemented that are particularly useful for
airfoil simulations. The activity of developing new code features was coupled with the activity
of porting to different architectures through different programming paradigms. This was made
possible by the peculiar development mode of STREAmS, which is done through two levels:

e code development in its core programming paradigm, namely CUDA Fortran

e conversion of the code to the other backends via sutils in-house library. Specific tuning

for each backend is possible through compact sutils external input.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 20 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

During the project, sutils has been updated several times to work with the latest versions of
STREAmMS in particular supporting curvilinear grid conversion and other new features. In
addition, sutils has been extended to produce code for 4 computational backends, namely:

e CPU (pure MPI)

e OpenMP

e HIP: details on the porting have been published in [10]

e OpenMP-offload: details on the porting have been published in [11]

For CPU, OpenMP, and HIP backends, low-memory versions can be obtained that avoid
unnecessary array duplication between CPUs and devices. Array duplication is clearly
unnecessary for backends where the computing device is the CPU itself (CPU, OpenMP). The
same may be true for the HIP backend in case it is used in the unified memory mode possible
for some recent architectures (such as AMD MI300A).

The different STREAmS backends were tested and benchmarked on a 4096 x 286 x 276 airfoil
grid corresponding to about 550M points. This benchmark case was tested on a single node of
different systems shown in Table 1. The table also shows the main characteristics of the systems
considered along with the compilers and versions used by our tests as well as the STREAmS
backends adopted. The use of the diverse systems was possible through CINECA internal
access (Leonardo), EuroHPC projects (LUMI, MareNostrumS5), JUREAP initiative (JEDI),
ALCF Director's Discretionary allocation program (Aurora) and Gauss Center for
Supercomputing project (Hunter).

The results of elapsed times per iteration are displayed in Figure 8, considering both energy-
preserving (central) and shock-capturing (WENO) convective schemes. The obtained
performance tends to reflect in an expected way the peak performance of the considered systems
with particular reference to bandwidth performance that plays a key role in a code like
STREAmS. The performance of nodes with NVIDIA A100 and AMD MI250X GPUs is similar
as well as that of nodes with NVIDIA H100 and AMD MI300A. The nodes with Intel 1550
GPU show similar performance as the HI00 nodes, but Aurora has 6 GPUs per node. The
performance of CPU nodes shows drastically worse performance without much variability
moving from CPU backend to OpenMP backend.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 21 of 54

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Cluster Partition Type PU #PU Backend Compiler Ver MPI Ver BW FLOPs Nodes
NVIDIA A100 CUDA

sl Leonardo Booster GPU (SXM4 64 GB) 4 Fortonn NVIDIA 243 OpenMPI 416 | 1635x4 | 20x4 | 1024
NVIDIA H100 CUDA

S2 Marenostrum5 ACC GPU (64GB HBM2) + Fortran NVIDIA 245 OpenMPI 4.1.7 2000x 4 | 26 x4 64

.| NVIDIA GH200 CUDA

s3 JEDI . superchip | “o6Gp 4TBys) 4 Fortons NVIDIA 25.1 OpenMPI 505 | 4000x4 | 34x4 | 32

s4 LUMI G GPU AMD MI2S0X | G“CDS) HIP | GNU/ROCm | 13.2.1/603 | Cray-MPICH | 8129 | 3200x4 | 48x4 | 2048

S5 Hunter GPU APU AN{?ZQE}';’;‘;"A 4 HIP | Flang/ROCm | 18.0.0/622 | Cray-MPICH | 8130 | 5300x4 | 61 x4 | 64

Intel 1550 6 OpenMP

$6 Aurora - GPU (125GB) (12 Tiles) | offload Intel 2024.07.30.002 MPICH 430rc3 | 3277x6 | 52x6 | 2048

$7 | MareNostrum5 GPP CPU Jnkcd Xeon 2 CPU Intel 2023.2.0 InelMPL | 2021.10.0 600 9 128
Platinum 8480p

S8 | MareNostrum5 | GPP CPU Intel Xeon 2 OpenMP Intel 2023.2.0 InelMPL | 2021.10.0 | 600 9 512
Platinum 8480p

AMD EPYC GNU 13.2.1
$9 LUMI c CPU 7763 2 CPU (Flang) (1700) Cray-MPICH | 8.1.29 410 5 1024
S10 LUMI c CPU AMD EPYC 2 OpenMP GNU 13.2.1 Cray-MPICH | 8.1.29 410 5 1024
7763 pen (Flang) (17.0.0) ray- o

Table 1: Systems, environments and STREAmS backends where performance was measured.

The same system is repeated if different STREAmS backends are used. The columns report acronym, cluster name, partition name, main Processing
Unit (PU) type, PU model, number of PUs per node, adopted STREAmMS backend, compiler, compiler version, MPI library, MPI library version,
theoretical peak bandwidth per node (GB/s), peak FLOPs per node (TFLOP/s) and maximum number of nodes used for our tests.

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

1.6 [Central
[WENO

Iteration elapsed time [s]

OpenMP-offload)

(Leonardo-Booster, CUDA)
(MareNostrum5-GPP, OpenMP)

<
a
=)
(5}
(%)
s}
<
b
=
2
i
3
2
L
5
2

4x NVIDIA H100 GPU
4x AMD MI250X GPU
2x AMD EPYC 7763 CPU
(LUMI-C, CPU)

(LUMI-G, HIP)
4x AMD MI300A APU

4x NVIDIA GH200 Sc
(HUNTER, HIP)

(JEDI, CUDA)
6x Intel 1550 GPU
2x Intel 8480+ CPU

(LUMI-C, OpenMP)

[, 4 NVIDIA A100 GPU
(V20 2x AMD EPYC 7763 CPU

1 S2 S3 S4 S5 S9 S10

Figure 8: Elapsed time comparison of the reference case (4096 x 286 x 276 grid) using one computing node
for each system considered. Both central and WENO results are reported. Note that CPU results are
multiplied by a factor 20 for readability.

To gain more awareness of the absolute performance of the solver, roofline analyses of the main
kernels were performed considering three reference GPUs namely NVIDIA A100, AMD
MI250X (GCD) and Intel 1550 (tile). Profilers from different vendors were used, namely
NVIDIA Nsight Compute, AMD Roc profiler and Intel Advisor. The results are shown in
Figure 9, comparing HBM and L1 memory levels. For simpler kernels the points are near the
lower region of the peak bandwidth area considering HBM level and the use of L1 does not
change the situation. For more complex kernels we move toward the compute bound region and
the use of L1 shows a significant decrease in arithmetic intensity and thus a higher perceived
bandwidth from the programmer's point of view. Overall, the absolute performance of the code
is good.

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

10° 10°

MAD-DP: 16.7 TFLOP /s MAD-OP: 1ho TFLOP/s
'g' 101 F VAR 104k ADD-DP: 8.5 TFLOP/s
wl
. /
o)
s
v
20)
g 10 10%
=
m
E v
¢
T o2) .
g 028
$
&
lql P = 0 o Nz 3 ;
0= 10 10 10 10~ 10 101 & - - - — .
Ll(]_“J 107! 10" 10 10° 10°

Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]

10°

MAD-DP; 204 TFLOP /5

ADD-DP: 10.2 TFLOP/s

100 ¢

101 L5 . .) L _
o710 109 101 10° 104
Arithmetic Intensity [FLOPs/Byte]

B update flux B culer x_update B visflx_div
euler x_fluxes_central euler.y update euler x_fluxes weno
| euler_y fluxes central B culer z update B culer y fluxes weno
euler_z fluxes_central visflx BN culer z fluxes weno

Figure 9: Hierarchical roofline analysis for HBM and L1 memory levels: FLOPs per second (vertical axis)
vs Arithmetic Intensity (horizontal axis). Significant kernels are considered comparing HBM values
(empty markers) vs L1 values (filled markers). Three architectures are considered, namely NVIDIA A100
GPU (left), AMD MI250X GCD (middle), and Intel 1550 Tile (right).

Weak scalability is reported for Leonardo and LUMI-G systems considering synchronous and
asynchronous communication patterns. The scalability shows the times per iteration using N
nodes rescaled by the time at one node corresponding to the reference case. The part with grey
background shows the intra-node scalability while the remaining points show the inter-node
scalability. The used computational grids correspond to physically significant cases as the
Reynolds number that can be simulated with a given grid increase. It is worth noting that the
memory occupation is not high (around 30% for Aurora cases for example) but this has been
done in view of realistic time-to-solution conditions. The largest case (2048 nodes) corresponds
to a computational grid suitable for Reynolds around 6M. The overall scaling performance is
good. For Leonardo, asynchronous communication allows keeping times within 20% of the
single-node case up to 1024 nodes, while for LUMI-G the asynchronous mode is not really

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 24 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

useful, but it is not necessary to achieve very good efficiency. We notice that the largest cases
are well beyond the maximum limits available using the standard system queues.

1.6
Communications

—— Synchronous

14F - Asynchronous

&
==
B~
0.8 F
0.6
—=— Leonardo-Booster, CUDA/CENTRAL —— LUMI-G, HIP/CENTRAL
Leonardo-Booster, CUDA/WENO —=— LUMI-G, HIP/WENO
0.4 -
10° 10" 10 10°
#Nodes
1.6

Communications
—— Synchronous

14F - Asynchronous

0.8 |
0.6 |
—— Leonardo-Booster, CUDA/CENTRAL —— LUMI-G, HIP/CENTRAL
: Leonardo-Booster, CUDA/WENO —— LUMI-G, HIP/WENO
0.4 i L ; i
10° 10! 10 10°

#Nodes

Figure 10: Weak scalability results for Leonardo-Booster and LUMI-G systems.

In Figure 10 the reference case is the single-node case. Both intra-node and inter-node scaling
are reported as elapsed time T normalised with the single node value T1 versus number of
nodes. Intra-node region is highlighted using a grey background. Continuous (dashed) lines
are used to represent results with synchronous (asychronous) communications.

2.7 L2G, OpenFOAM, Raysect

The work during this period focused on porting the FA-case workflow to distributed memory
architecture. Previously only OpenFOAM was executed across multiple computational nodes,
and during this period we ported L2G and Raysect as well. Both L2G and Raysect utilise the
OpenMPI library for distributed computation. L2G has a hybrid parallelisation strategy that
combines OpenMPI for inter-node communication with OpenMP for threading within each
node. OpenMPI was also added to Raysect for distributing rendering across multiple nodes. For
intra-node parallelism we use Python's multiprocessing module. For all three code we ran strong
scaling benchmarks on the Vega HPC machine. OpenFOAM simulations were executed on the
largemem partition of Vega, which consists of 192 nodes. Each node has two AMD EPYC
Rome 7H12 CPUs, with 128 physical cores per node, and has 1 TB of RAM. High-speed

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 25 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

HDR100 Infiniband networking is installed for inter-node communication. L2G and Raysect
benchmarks were ran on the standard partition, where each node offers 256 GB of RAM
instead of 1 TB.

In the case of L2G, strong scaling tests were performed for up to 5000 total parallel processes
(50 MPI ranks with 100 OpenMP threads). The benchmarking scenario was based on the WEST
reactor geometry, with a focus on two subcomponents: the baffle “target,” composed of ~50000
elements, and the divertor “shadow,” composed of ~2 million cells. The simulation involved
launching magnetic field lines into the computational domain from the target and calculating
their intersection with the neighbouring divertor shadow.

L2G (strong scaling)

102 4~

N!I‘:reﬂd's texeclsl w
1 992 -
2 494 £ o
1000 60
5000 21

107

100 10! 10? 10?
Noroc

Figure 11: (left) table of thread numbers vs. time (right) Strong scaling plot for L2G (blue line) with
theoretical scaling (dashed orange line).

OpenFOAM benchmarks focused on simulating the ITER reactor’s first wall panel, again panel
with ID 4. This geometry comprised roughly 35 million tetrahedral cells. The simulation ran
for 30 timesteps and was tested for up to 1200 MPI processes. The OpenFOAM native binary
format was used for mesh.

OpenFOAM (strong scaling)

Nithreads Lexecls]
1 3490 s

48 837

96 273 T
240 165 g
480 68.9

960 24.8 m:
1200 16.4

10° 1.2 x 10%
Npros

Figure 12: (left) table of thread numbers vs. time (right) Strong scaling plot for OpenFOAM (blue line)
with theoretical scaling (dashed orange line).

Raysect benchmarks targeted a simplified representation of the ITER reactor, concentrating on
the outer wall panels with IDs 8-18. A 1024x1024 resolution camera with an RGB adaptive

Project 101092621 EXCELLERAT P2 Deliverable D3.2

Page 26 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

sampler was defined, launching 250 rays per pixel. The test was scaled up to 1500 MPI
processes and shows distribution of computational load during rendering passes.

Raysect (strong scaling)

Nthreads texecls] 10°
1 13695
32 6671 |

96 4646 %
390 1990 .
70 1429
1150 1466 ‘
1540 1350 .

10° 10t 10? 10°
Nproe

Figure 13: (left) table of thread numbers vs. time (right) Strong scaling plot for Raysect (blue line) with
theoretical scaling (dashed orange line).

Strong scaling plots show some efficiency gains; however, the plots are far from ideal. For the
remaining period of the project, the UL will have to put focus into improving the scalability of
the proposed codes. The collaboration with another Center of Excellence (POP3) is planned to
advance the scalability of L2G with the use of their libraries Extrae [12]/Paraver [13]. We also
collaborate internally with SiPearl through mini-app tests for OpenFOAM application.

Regarding IO optimisation, both L2G and Raysect now include reading and writing routines
for the MED file format for mesh exchange. This format is based on HDF5 and identified by
the .med extension. It is supported via the MED file C++ library (provided by EdF R&D) and
managed with the MEDCoupling API. OpenFOAM continues to use its native binary format
for both mesh and simulation field data.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 27 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

3 Task 3.2: Co-design lab for emerging technologies

3.1 Co-Design

Co-design in High-Performance Computing (HPC) is a collaborative, iterative process
where hardware architects, software developers, domain scientists, and system designers work
together to create systems tailored to specific workloads. By aligning hardware and software
development, co-design maximises performance, energy efficiency, and usability. When
technologies nature and system designs are fixed, co-design may shift to merely porting and
optimizing applications for the dedicated hardware but can shape future hardware and software
iterations.

SiPearl is a European company, issued from the efforts around the definition of the many-cores
EPI processor architecture. Its first processor, Rhea, is a general-purpose ARM-based CPU
equipped with both HBM and DDR memories (see Figure 14). Rhea is composed of power
efficient Arm Neoverse V1 cores with the Arm Scalable Vector Extension (SVE). To address
the full range of HPC workloads (including Al and Machine Learning), these SVE units support
multiple precision types: double precision, single precision, BFloatl6 and 8-bits integers.
Incorporating in-package High Bandwidth Memory (HBM2e¢), Rhea also delivers extraordinary
compute performance and efficiency with an unmatched Bytes/Flops ratio. Since the core count
of modern processors is increasing faster than total memory capacity and bandwidth, the gap is
not getting closer, so the memory subsystem is now more critical than ever, making today many
applications memory-bounded, especially the codes studied in the EXCELLERAT P2 Project.

High-Bandwidth Memory
for performance

LLC : last level cache Il I -

DDR5
for capacity
and/or support functions

Figure 14: ARM-based CPU equipped with both HBM and DDR memories.

Thanks to the Mont-Blanc project, AArch64 ecosystem has reached a high level of maturity in
HPC, with prototypes starting in 2014 and achieving Top500 recognition by 2018; Fugaku
topped the list in 2020. Nonetheless Rhea offers several new features that may require to modify
existing application and libraries by co-design efforts with the members of the EXCELLERAT
Consortium:

e SVE with 256-bit length: requires to carefully design compilers and algorithms to
benefit this technology. As others SIMD architectures, SVE allows to execute a
single instruction on multiple data. However, SVE does not define a fix vector size,
but vector size can be defined at hardware level, ranging from 128 to 2048 bits by
128-bit increments. Therefore, any CPU vendor can implement the extension by
choosing the Vector Length (VL) size that better suits the workloads the CPU is
targeting. The design of SVE guarantees that the same program can run on different
implementations of the instruction set architecture without the need to recompile the
code removing the barriers for auto-vectorisation. Vector Length Agnostic (VLA)

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 28 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

capability enables portability, scalability, and optimisations in comparison with
other traditional unpredicated SIMD architectures. On such architectures, the
programmer (or the compiler) needs to add an additional loop, called loop tail, that
is responsible for processing those iterations at the end of the loop that do not fit in
a full vector length. VLA includes instructions that allow the vector code to
automatically adapt to the current vector length at runtime.

e HBM2e and DDRS for memory bandwidth, latency and capacity requires to
carefully place data to the best memory tiers. Indeed, DDR offers a high capacity,
low latency memory while HBM offers a high latency, lower capacity (up to 64Go
for Rhea). To take the most of these two memory tiers, one should carefully place
data. Contrary to traditional machine, with a single memory tier, this highlights the
need of having a closer look to allocations, deallocation, and memory access
patterns.

These two specificities require some co-design effort for every application in EXCELLERAT
P2. Nonetheless, large applications are hard to handle, profile, study and optimise.
Consequently, an effort has been done to extract kernels/mini-apps from existing HPC
applications. With these kernels/mini-apps it is easier to see the impact of vectorisation and
memory placement. Once satisfied by performance, these changes can be backpropagated
directly into the existing application to see the impact, at scale. Also, these kernels / mini-apps
are well suited to be run in the early stage of the design of the processor onto existing simulators.
Moreover, these snippets help to characterise code, and to see a/the common profile between
CFD codes used in the project. This characterisation will help the design of future hardware.

As a consequence, for each of the code studied so far, we provide:

e An identity card describing the intrinsic characteristics of the application. This
helps identify which parts of the software stack are utilised by the application. Thus,
details are provided about the programming paradigms (MPI, OMP, Kokkos, etc.)
and programming languages (C, C++, Fortran, etc.). Other information is also
included, such as the datasets tested, the best compiler option to use, hot functions
and the percentage of memory bound for each test case. The goal of this identity
card is to provide a quick overview of the application.

e Porting, profiling and optimisation information. This part aims to describe both
the maturity of the software stack and the level of optimisation of the (mini-)
application w.r.t. a given test case. It includes the relative comparison onto various
architecture (ARM, X86) performance of compilers and dependencies, information
about scalability and any potential bottlenecks. A detailed analysis of vectorisation
is also included, as well as any generic modifications/optimisations, through
parameter activation/deactivation and the use of directives.

3.2 OpenFOAM

OpenFOAM is an open-source CFD software suite and library that includes a wide range of
solvers for various types of simulations. These include, for example, complex fluid flows
involving chemical reactions, turbulence, heat transfer, acoustics, solid mechanics, and more.

Code Repository l:r:tzls t://develop.openfoam.com/Development/openfoa
Version Branch: OpenFOAM-v2312

Language(s) C, C++

Paradigms MPI

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 29 of 54

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

For OpenFOAM, two test cases 'Small' and 'Large', provided by the University of Ljubljana
(UL), were used. Both test cases run the same simulation but at different resolutions, with
'Large' having the higher resolution. The 'Small' test case was too small to be parallelised, so
all analyses for this case were performed on a single core.

Small Large
Compiler GNU compilers 13.2.0
Compilation -O3 -floop-optimize -falign-loops -falign-labels -falign-functions -falign-
flags jumps -mcpu=native -funroll-loops
. . 1004s (1 cores)
Runtime with 10 | 64.32s (1 cores)

20.52s (64 cores)

Runtime without
10

7.3s (1 cores)

159s (1 cores)
6.11s (64 cores)

Vectorisation

1.77%

Hot Functions

interpolateXY (13.67%)
LduMatrix::Amul (11.81%)

DICPreconditioner::precondition
(11.44%)

DICPreconditioner::precondition
(24.11%)
gaussGrad::gradf (20.91%)

. v 0
(without 10) saussGrad::gradf (10.77%) LduMatrlx..Amu'l (11.81%))
: N surfacelnterpolationScheme::dotInterp
surfacelnterpolationScheme::dotInter olate (11.45%)
polate (4.97%) e
Memory Usage | 328MB 3.25GB
SapphireRapids R R
HBM speedup 8% 4%

Topdown (No-io)

Front End Bound: 17.98%
Back-End Bound: 51.77%
Retiring: 31.31%

Bad Spedulation: 0.82%

Front End Bound: 14.69%
Back-End Bound: 66.23%
Retiring: 18.59%

Bad Spedulation: 0.32%

SVE: 0.52%
Float: 11.46%
Branch: 16.66%

. . L1D: 30.69 L1D:94
i‘:‘:;‘l’fcgf;m" L2: 20.671 L2: 2.46
L3:12.04 L3:10.9
Load: 30.92% Load: 35.20%
Store: 9.65% Store: 10.70%
Integer: 28.68% Integer: 32.74%
Operation Mix NEON: 2.11% NEON: 0.87%

SVE: 0.90%
Float: 2.55%
Branch: 17.04%

Table 2: OpenFOAM Identity card.

Extensive profiling was performed. In the top-down analysis, it can be observed that the two
test cases show similar behaviour. The only significant difference lies in the levels of retiring
and back-end bound instructions. Retiring instructions are those that complete successfully
without encountering issues or being stalled by any component. A front-end bound state
indicates that the processor pipeline cannot be fully utilised, while a back-end bound state
suggests delays caused either by memory operations (memory bound) or by limitations in
compute capacity (core bound). 'Bad speculation' refers to incorrect predictions or prefetches

Project 101092621

EXCELLERAT P2 Deliverable D3.2

Page 30 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

made by the out-of-order processor, which result in the need to recompute or fetch the correct
data. Also, operation mix is quite similar, and the only observed difference come from the use
of MPL

When this analysis is combined with the observed speedup achieved using HBM on the ‘Large
Test case’ (see Figure 15 right), it can be concluded that the larger test case is more memory-
bound. This can be attributed to the larger mesh used, which involves more points and thus fills
the cache more quickly. As a result, more frequent accesses to RAM are required. It should be
also noticed that on the large test case, a correct scaling is observed. The left-hand side of Figure
15 depicts the scalability, on AArch64, with and without I/O. The trend of the plot is similar up
to 32 to cores, then when no I/O are considered, some performance stall can be observed,
probably due to a code that becomes more memory bounded. All these elements, tend to suggest

that Rhea, with its high number of cores and HBM will perform well on these test cases.
Figure 15: OpenFOAM runtime and scaling.

Scaling OpenFOAM on Graviton3 Scaling OpenFoam large
1000 80
72 1
64 2
s
- 100 56 7
) £ 48
= s
) =
E g 40 s
g & 32 %
& 10 24
16 £
8 ~
0 <
1
1 2 4 8 16 32 64 0 8 16 24 32 40 48 56 64 72 80
Number of core . Nb core
——&—— (Graviton 3 —@— (race
—=e—— SPR - HBM SPR-DDR
—#—Nol0 —e—wlIO == = Perfect Scaling
I/O impacts performance significantly by =~ Note that better speedup does not mean the
Factor 1 runtime is better, it shows only how well
the application is scaling from the
sequential run

Vectorisation attempts were made and tested on both test cases, focusing mainly on Amul and
the DICPreconditioner, which were identified as the two primary bottlenecks. Unfortunately,
no success was achieved - at best, the performance remained unchanged, and in some cases, a
performance loss was observed. It was found that the compiler was already making optimal
choices regarding vectorisation and interleaving. The second loop was determined to be non-
vectorizable due to data dependencies and indirect memory accesses, which could cause two
consecutive iterations to access the same data. Essentially, each iteration could depend on itself
or on previous iterations. An attempt was made to split this second loop to facilitate
vectorisation, but none of the efforts were successful.

A domain partitioning study was conducted for the larger test case. It was found that the best
performance was achieved using the partitioning scheme (1;1;X), where X represents the
number of MPI processes. This approach evenly splits the domain along one dimension.
Various optimisations developed by Fujitsu for the A64FX CPU
(https://github.com/fujitsu/oss-patches-for-a64fx/tree/master/OpenFOAM), which is based on
the AArch64 microarchitecture derived from Neoverse-V1, were also tested. No performance
improvements were observed on either the Graviton3 or the Grace Superchip. However,

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 31 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

considering that the A64FX also utilises HBM, these optimisations may still be of interest for
Rhea.

Optimizing OpenFOAM is a complex task due to the underlying structure of the code. For the
sake of genericity, OpenFOAM uses abstractions and indirection that constraints memory
access and vectorisation. An in-depth optimisation is still in progress.

3.3 Neko

Neko is a library/framework for high-order spectral element flow simulations. It is written in
modern Fortran and leverage on object-oriented concepts which allow for example the
abstraction of the solver stack to facilitate usage on heterogeneous machines which use different
kind of hardware.

Code Repository https://github.com/ExtremeFLOW /neko
Version N/A ; 9f03d7d41

Language(s) Fortran

Paradigms MPI, CUDA, HIP, OpenCL

In the context of the project, three test cases were provided in order to have an in-depth analysis.
Neko bk5 test case, can run on most mesh size and consist in a single kernel. Neko opr test case
represents a collection of seven math kernels extracted from the full application. Neko TGV test
case, a Taylor Green Vortices simulation, represent the full application. With these three test
cases, in depth analysis, from the simplest to the hardest, can be conducted.

The table below depicts the identity card of Neko.

BkS Opr TGV
Compiler GNU compilers 13.2.0
-g -mcpu=native -
03**
Compilation .
flags -g -mcpu=native -Ofast (**) some crashes
were observed with -
Ofast
Mesh used 8,192 8,192 32,768
Ix value 10 10 L
E;%gre of Merit | 5ry ops Tteration Time WCT (sec)
FOM (all cores) | 452.42 4.01E-02 514.04
Vectorisation 100% 80% 58.8%
cpu_dudxyz 1x10 tnsr3d_cpu (17.6%)
(25%) ax_helm_1x8
cpu_opgrad 1x10 (17.18%)
?;‘6—213/5)—1"10 (12.62%) visc3 (6.64%)
Hot Functions mcé bil vader com | €8 (12.62%) gs_gather cpu
(without 10) onent rooress™ cpu_convl Ix10 (6.29%)
?3 0 40/_)p &t (7.94%) cpu_opgrad Ix12
e acos_finite (7.79%) (6.05%)
mca_btl vader comp | gs scatter cpu
onent progress™® (5%) | (5.79%)

Project 101092621

EXCELLERAT P2 Deliverable D3.2

Page 32 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

ax_helm_Ix10 cpu_dudxyz 1x8
(4.84%) (5.1%)
acos (4.7%)

cpu_cdtp 1x8 (1.64%)
lambda2op (1.46%)

TopDown

Memory Usage | 2.7GB 3.1GB 39GB
SapphireRapid o . .
s HBM speedup +26.33% +21.54% +130%

Table 3: Neko identity card.

*: This is the function MPI use to progress every communication (P2P, Collective,
Synchronisation)

First, the impact of the upcoming HBM in Rhea was evaluated. By using HBM on Sapphire
Rapids, it was observed that Neko bk5 and all Neko opr kernels were no longer memory-
bound, indicating that the full compute power of the CPU could be utilised. During the profiling
of Neko_opr, opportunities for optimisation related to mathematical functions were identified.
In the lambda2 function, a significant amount of time was found to be spent in calls to cos, acos,
and acos_finite. These math calls were also found to hinder vectorisation, as no vectorised
versions of these functions exist in the standard library. However, vectorised math libraries are
available: by using SLEEF or ARMPL, making small modifications to the function, and
applying a patched version of GCC, full vectorisation of the function was achieved. This
significantly reduced the time spent in mathematical operations and led to a speedup of factor
2 for the function, and a speedup of factor 1.21 for the overall mini-app. Figure 16 depicts the
gain on the various kernels.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 33 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Kernel average Runtime (Lower is Better)
0.023

0.020
0.018
0.015

0.013

Time (sec)

0.010
0.008

0.005

- - . .
o000 m
axhelm opgrad convl dudxyz cdtp curl lambda2

m0O3mcpu mO3march mOfast mcpu + sleef Ofast march + sleef

Figure 16: Neko_opr Kernels runtime.

Unfortunately, this patch will not be upstreamed as it has been refused by the GCC maintainer
(more details here) but this is available natively with the LLVM compiler. For now, llvm-flang
cannot compile Neko, but the compilation is going further each month as flang is progressing
fast.

In order to see the potential impact of the HBM in Rhea, some memory consumption analysis
was made, on both Neko bk5 & Neko opr. Since results are similar, only the BKS example is
depicted here. Figure 17 shows the memory consumption w.r.t. mesh size and LX parameter.
This analysis is essential to know, a priori (in advance), the size that the test case will occupy,
since the HBM in Rhea is limited to 64 GB. Similar analysis will be done later for the TGV test
case.

0.5
0.4
z o0
3
c 80 L 0.3
60
S 40
20
0 L 0.2
0.1
£
%4 20000
o , 4 = 0.0

Figure 17: Neko_bkS Memory Consumption projection.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 34 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Also, the memory access patterns have been studied for Neko bkS5. Most of these accesses are
regular, and the prefetcher should be able to predict them to reduce the cache miss as much as
possible.

Finally, some scalability analyses were made. Figure 18 shows the scalability, for the various
test cases and for Neoverse-V1, below. It can be observed that as the complexity of the test case
increases, its scalability decreases. This is due to the combination of multiple kernels, each
exhibiting different scaling behaviours.

Scaling from sequential on Graviton 3
70
60
50
240
=
]
2
« 30
20
10
0 .
0 10 20 30 40 50 60 70
Number of cores
emfpm b5 = = PerfectScaling Neko opr —®— no-10
Figure 18: Neko scaling of all miniapp/cases on Graviton 3.
3.4 m-AIA

m-AlA is a multiphysics simulation tool that includes multiple solvers for, among others,
Navier-Stokes equations and acoustic perturbation equations.

Code Repository Open Source
Version N/A
Language(s) C++
Paradigms None

An important part of the application is the Ibcum solver that was extracted by the code owners
and profiled by SiPearl. The extracted solver was originally sequential and invoked within MPI
processes in the full application. A small addition of OpenMP and MPI support was made to
the mini-app. Equivalent performance and results were obtained with both parallelisation
paradigms.

Based on profiling feedback, the initial version was enhanced by the code owners.
Consequently, several versions of the mini-app were made available: ‘OLD’, that represent the
initial version provided by developers, ‘SOA’, a version using structure of arrays to pack
memory accesses, SOA-VEC, that builds upon SOA but with some focus on vectorisation, and
SOA-VEC-Template that generalises SOA-VEC. For the sake of clarity, in the following we
reference by VEC (respectively SOA-VEC), the VEC-Template version (respectively SOA-

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 35 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

VEC-Template). It should be noted that VEC is handmade outer loop vectorisation that supports
SSE, AVX/AVX2 & AVX512. VEC-Template benefits from the C++ template concepts. Since
this template versions did not support AArch64, some efforts have been made to provide a
specialised version for Neoverse architecture. Nonetheless, this vectorisation cannot be vector
length agnostic due the fact that sve intrinsics/type cannot be used inside of union because their
size is unknown at compile time. Consequently, the flag -msve-vector-bits is now required to
compile on ARM. This flag is used to define the size of SVE register at compile time. The table
below depicts the profile of all the aforementioned versions.

Old Soa Vec Vec Template
Compiler GNU compilers 13.2.0
Compilation -march=native -g -O3 - -march=native -g -O3 -fopenmp -
flags fopenmp msve-vector-bits=256
Number of cells | 10000000
Runtime (ms) 5705.94 4928.54 2805.53 2817.4
Vectorisation 0% 72% 100% 100%
Memory Usage 4.4GB 4.4GB 4.4GB 4.4GB
fl*‘l;’l{’,lh;;‘;l:;fl‘)ds 0% 1% 69% 54%

Table 4: m-AIA identity card.

It should be noted that SiPearl has a patch for automatic OuterLoop Vectorisation inside of
LLVM (see pull request here). When using this patch on the SOA version, similar performance
than the VEC version is obtained, but with the advantage of being more flexible and target
independent.

Runtime on Graviton3

Runtime (ms)
=
w1
=
=
=

Number of Core

—e—(0LD —e—50A VEC-SVE —@—VEC_TEMPLATE-SVE VEC-NEON —@—VEC_TEMPLATE-NEON

Figure 19: Runtime of all implementations on Graviton3.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 36 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Speedup from sequential run on Graviton3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Number of Core
—e&— 0OLD —8— S0A = = Perfect Scaling

VEC-SVE —&— VEC_TEMPLATE-SVE VEC-NEON

Figure 20: Speedup from Sequential on SapphireRapids with HBM or DDR.

Some experiments have been also carried out to analyse the impact of HBM. Figure 20 depicts
the impact of such memory on SapphireRapids. As shown, when HBM is used, the versions
that make intensive use of compute capabilities (i.e., the most vectorised versions) are found to
be significantly less memory-bound. This explains the substantial speedup observed with HBM
and this is promising for Rhea.

3.5 STREAmS

STREAmS solves the unsteady Navier-Stokes equations for perfect gases, to perform numerical
simulation of compressible turbulent flows. STREAmS shares algorithmic similarities with
FLEW and uses the same development concepts. The current version of STREAmS includes
all the FLEW functionalities.

Code Repository N/A

Version July 2024
Language(s) Fortran
Paradigms MPI/OpenMP

Two versions of the code are considered in this section: ‘CPU’ that used only MPI, and ‘OMP’
that uses only OpenMP.

Version CPU OoMP
Compiler GNU compilers 13.2.0

Compilation .

flags -O3 -fopenmp -march=native -g

Domain Size 320x240x320

Average

Iteration time 0.92 0.83
in second

Vectorisation 21.71%

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 37 of 54

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Hot Functions

visflx_nosensor subroutine 23.28%
euler z hybrid kernel 14.17%

euler y hybrid kernel 13.16%

euler x fluxes hybrid kernel 12.51%
exp 7.17%

pow 6.92%

visflx_subroutine 2.71%
visflx_div_subroutine 2.25%

init_flux subroutine 2.00%

Memory Usage | 10.6GB
SapphireRapid
s HBM speedup | 743.82% +20.79*%

Table 5: STREAmS identity card.

*: The speedup is lower for the OpenMP version since Sapphire Rapids have 4 numa nodes
per socket and allocation is done outside of an OpenMP parallel region. This creates a numa
effect that could be removed by using at least one MPI per numa node. This combination of
both versions (MPI and OMP) is called HYB in the following.

1,5

Runtime (s)

0,5

16

Average Iteration Time

20 24 28 32 36 40 44 48 52 56 60 64 68
Number of core

=@i=HYB —®—O0OMP ===MPI

Project 101092621

Figure 21: STREAmS average iteration time.

EXCELLERAT P2 Deliverable D3.2 Page 38 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Speedup From Sequential

& 28

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Number of core

==f==HYB —&—0OMP MPI == == Perfect Scaling

Figure 22: STREAmS Speedup from sequential on Graviton 3.

Figure 21 and Figure 22 depict the scalability of the three versions in both Average Iteration
Time and speedup based on the sequential version. It should be noted that the HYB is built
upon the best combination of OpenMP(OMP) and MPI for each point. Also, small code
modifications were made to improve slightly the performances and increase the amount of
vectorisation. For example, the addition on OpenMP Single Intruction Multiple Data (SIMD)
directives and the reordering of loop to ensure consecutive memory access. This helps the
compiler to vectorise innermost loops. The use of Automatic Outer Loop vectorisation was also
used to vectorise the visflx_nosensor subroutine. These two modifications slightly increase the
code vectorisation, bringing it to 23.43%.

The impact on performance is still being evaluated: for the moment the performance is the same
with or without the outer loop vectorisation. The line:

cploc(i) = cploc(i)+cp_coeff cpu(ll)*(tt(i)/te)**11

contains an exponential but AArch64 micro architecture does not have a vectorised exponential
instruction. Some approximation could be made but at the cost of precision loss. Thus, the
SLEEF library was used, as it provides implementations for vectorised mathematical functions.
However, this introduced another issue: in this case, the left-hand side of the exponential
operation is a floating-point value, while the right-hand side is an integer. Even within SLEEF,
no such exponential function exists for this combination. A temporary workaround was applied
by casting the integer to a floating-point type. However, this made the exponential computation
more costly. An internal implementation of such an exponential function is currently being
developed, which is expected to be faster than the full floating-point version. Performance
improvements are anticipated as a result.

3.6 Co-Design Service for exaSim project

The task was also opened for service to the exaSim project, funded by the BMBF in Germany.
The applications NeoFOAM and NeoN were target of the co-design services for benchmarking,
profiling, and performance engineering on Nvidia’s Grace Hopper 200 (GH200) CPU-GPU and
AMD’s MI300 APU. The former Grace CPU is also ARM-based and was initially proposed by
SiPearl as a good proxy system to their Rhea architecture. The latter is of particular interest at
HLRS because of the new system Hunter that utilises the AMD APUs for which data

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 39 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

management is unified on the hardware level. Hence, applications can and should omit
additional data copies to and from a GPU as device.

NeoFOAM/NeoN from the exaSim project is an effort to port core PDE solver functionality to
the GPU while relying on the well-established and industry-relevant DSL of OpenFOAM.
Hence, NeoFOAM is used as an adapter in which user-coding of OpenFOAM cases ties
OpenFOAM and NeoN together where NeoN can be expanded to gradually replace the compute
intensive parts by accelerated kernels.

Hence, the first test case for co-design services used the scalarAdvection case of NeoFOAM.
We used LLVM/clang compiler flags to check for vectorisation potential. It was found that
some core device code showed missing vectorisation in loops that are often reused for
acceleration through threading when used on the Grace CPU only. Resulting optimisation to
enable compiler-based vectorisation yielded a performance gain of 3% on the Grace CPU.

Secondly, the scalarAdvection case was used for GPU profiling with Nvidia’s Nsight Systems.
Here, highly abundant allocations on the Hopper GPU could be identified and removed after
fully using NeoN’s DSL (PR #38). Moreover, the hierarchy of GPU kernel utilisation was
identified as 38% setField, 31% computeDiv, 18% interpolate, 7% fieldBinaryOp, and 5%
scalarMul. The major bottleneck setField is filling arrays with given values like 0 for
initialisation. This leaves room for optimisation regarding the memory management.

Profiling the test case on CPU and GPU together revealed that the calculation of the Courant
number was still using CPU kernels, majorly contributed to the overall runtime (30% and more),
and could be easily ported to GPU using NeoN’s accelerated loops. We measured the average
Finite Volume Operations per Second (FVOPS) with varying case size in terms of grid elements
using the GPU and CPU versions of the CFL number calculations on the GH200 and MI300A.

X 10|6 x10°
T T

T T T T T T T T T 160

i CFL on GPU] CFL on GPU

<3 1o CFLonCPU o < 1407 CFLonCPU ¢ |
s 120 2120 a
G 100 - =100 -]
g 8o . . ", & 80f 1
gf 60 o ® . g)_ 60 - .]
O 40 F ° . . ° ° o 40 L ° R . s]

E > i ° . ° ° .
20 o0t]

L L 1 1 1 1 1 1 1 1 ><106 0 | | Il | 1 | 1 | 1 1 1 ><106
12525 5 1 2 4 8 16 32 64 128 12525 5 1 2 4 8 16 32 64 128
grid elements grid elements

Figure 23: FVOPS for different case sizes on GH200 (left) and MI300A (right).

The graphics in Figure 23 show that the GPU ported CFL calculation improves FVOPS by up
to 75% at the performance peak on the GH200 at 500k grid elements. On the MI300A we could
not observe a similar peak and the GPU implementation of the CFL number only shows
performance gains for particular case sizes. Here, further investigation regarding the accelerated
loops on the MI300A is required.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 40 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

1000

100 £ ¢ E

wall time for setup [s]
o
o
L]

x10°

1 2 4 8 16 32 64 128
grid elements

Figure 24: Wall time for initial case setup for different case sizes.

Finally, the wall time for the initial case setup was investigated (see Figure 24) because it was
quickly found, that it would noticeably increase with larger cases. Here, NeoFOAM relies on
the legacy I/O of OpenFOAM and then copies the data to NeoFOAM and NeoN data containers.
OpenFOAM’s I/O is particularly not suited for high performance because the files are typically
loaded on line-by-line basis or even by individual characters. Thus, a NeoFOAM native I/O
functionality is recommended to cut the I/O costs by reading full arrays reducing I/O operations
and to avoid data duplication overheads.

4 Task 3.3: Testing, Validation and Deployment

As the workflows comprise multiple components that may run on potentially diverse hardware,
the validation and benchmarking results will span from individual component assessments to
full-scale simulations and complete workflow rounds.

In summary, this task comprises three core aspects, revolving around a unified testing platform
serving the purposes of validation, deployment, and benchmarking. The specific definition and
execution of this testing platform, as well as the overall approach of Task 3.3, has been
dependent on the input and direction provided by the CASTIEL 2 project managing the
coordination and support for National Competence Centres (NCC) and Centres of Excellence
(CoE) on a European level.

The evolutions of the CASTIEL 2 project defined a standardised way to perform testing,
validation and deployment on most hosting entities part of the EuroHPC JU alliance. In
particular, applications should adopt a Gitlab Runners solution for testing and validation duties
and rely on EESSI for deployment. Following these directives, we started adapting the
procedures already in place, also overviewed in deliverable D3.1. Our first candidate for the
adoption of the tools for testing, validation and deployment is the Alya application, part of UC4.
Alya already employs Gitlab Runners for testing and validation, but it does not rely on EESSI
for deployment. Our efforts to switch to EESSI found a limitation in the closeness of the source
of the application, which requires an explicit collaboration agreement. While there are many
possibilities to handle this issue (like treating the closed source as an external dependency),
they take time to implement, as they also involve legal disputes over the software licenses.
Alongside the work on the Alya application, we are considering the AVBP one part of UC2
since it also uses Gitlab Runners for automated testing and validation. For this application, the
adoption of EESSI can follow a different pattern, as we can rely on the containerised solution
already present. In the upcoming month, we envision the adoption of Gitlab Runners and EESSI
for both applications, and we may extend the interaction considering an additional application.

Alongside these efforts aimed at adopting the tools defined by CASTIEL 2, we focused on the
introduction of an ad-hoc pipeline for automatic testing, validation and benchmarking for the

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 41 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

STREAmS application, which was lacking any mechanism for it. The following subsection
covers the developments in that direction.

4.1 STREAmS automatic testing, validation and benchmarking
Testing and deployment

At present, the STREAmS application has been deployed and tested on ten HPC partitions, both
CPU- and GPU-based: 8 of them are EuroHPC JU partitions, while 2 are external, one (Hunter
Supercomputer) in Germany and one (Aurora) in the United States. The benchmarking
campaign is still in progress. As for the deployment of the in-situ part, given the effort related
to compilation, it has been done on the systems for which concrete use is expected. In particular,
the deployment on LUMI-G is of relevance given the availability of hours provided within the
last EuroHPC extreme project (EHPC-EXT-2024E02-130) awarded for EXCELLERAT
simulations. Table 6 summarises the deployment status of STREAmS on the targeted systems.

Architecture Backend Tested Benchmarked In Production
situ

A100 CUDA y y y ongoing
Booster Fortran

Sapphire CPU & y ongoing
DCGP OpenMP

H100 CUDA y y y ongoing
-ACC Fortran

Sapphire CPU & y y ongoing
-GPP OpenMP

LUMI-G MI250X HIP y y y ongoing, EuroHPC
extreme: 1M node-
hours for
EXCELLERAT
runs

LUMI- Zen3 CPU & y y y
OpenMP

MI300A HIP y ongoing

1550 OpenMP- y ongoing
offload

A100 CUDA y y y completed
Fortran

JEDI GH200 CUDA y ongoing
(JUPITER) Fortran

Table 6: Deployment summary of STREAmS on the different HPC resources tested.

The columns report system name, type, architecture, adopted STREAmS backends, and the statuses of test,
benchmark, in situ and production activities.

Benchmarking automation

To facilitate performance testing of STREAmS, we have significantly enhanced our TEBE
(TEsting Benchmarking Engineering code) tool. Somewhat inspired by the JUBE
Benchmarking Environment [14], TEBE allows us to prepare, manage, submit, and analyse
benchmarking cases of STREAmMS and potentially other codes as well. TEBE's architecture has
two layers: the first layer implements generic functionality while the second layer contains the
connection layers between TEBE and different codes. This second layer allows TEBE to
properly interact with the code to be benchmarked, thus defining the set of test simulations in a
compact way using a simple syntax based on algebraic operators. As an example, in Figure 25
we show a part of TEBE input where we define weak scaling cases (params-1 dictionary),
strong scaling cases (params-2 dictionary), and cases at varying threshold of shock-capturing

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 42 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

patterns activation (params-3 dictionary). The initial params expression formula combines the
three dictionaries so that all cases of strong and weak scaling for different convective patterns
are generated.

= Fafﬁmﬂ_l‘ﬁﬂrﬂmﬁ_j|ﬂﬂﬂﬂm5_?'ﬂ;?ﬂﬂi"j

L3,2BB787.53,276003 .84, 367198, 36,486531 . 64

36531.84,486531.84,486531.84,436531.84

Figure 25: Example input section defining strong and weak scaling using TEBE benchmarking tool.

After creating cases, TEBE manages the submission to the queuing system (supporting SLURM
and PBS schedulers) via templates of submission scripts that can be adapted to the system under
consideration. TEBE also allows results to be extracted and saved in tables that can then be
used for analysis or visualisation. TEBE is implemented in Python and has been installed and
used on all the systems tested, drastically reducing the effort of managing the many test cases
on the different machines.

Continuous Integration

The past EuroHPC project EHPC-EXT-2023E01-034, based on the use of the STREAmS
solver, has been selected among the 15 projects of the highly ranked Extreme scale, Al and Al
Boost projects and the strategic Destination Earth project to join JUREAP, the JUPITER
Research and Early Access Program. This allowed us to test STREAmS on JEDI, the
preparatory system for JUPITER. In this context, we also worked to ensure that STREAmS was
connected to the Continuous Integration system developed for JUREAP. Since STREAmS did
not have any form of CI, this allowed us to start this development in a way that was also
appropriate for the context of a EuroHPC system. The used technology is based on four basic
elements:

e GitLab runner: the agent that picks up a CI job, runs it as defined in the pipeline
configuration file and sends the result to the GitLab instance.
o JACAMAR CI: the CI/CD driver for HPC that uses GitLab's custom executor model.
e exaCB: a framework containing a set of tools and configurations to enable Continuous
Benchmarking (CB) through GitLab on JSC systems
e JUBE: a benchmarking environment that provides a script-based framework to easily
create benchmark sets. Additionally, a component is under development to use our
TEBE tool instead of JUBE, which allows for more agile management of STREAmMS
configuration sets.
A preliminary Continuous Benchmarking (CB)-oriented pipeline is currently working on JEDI,
and it is certainly a useful proof-of-concept. Further development is needed to make it more
useful in the real context of STREAmMS development and testing. In particular, the evolution of

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 43 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

the pipeline may depend on what is established within the framework of EXCELLERAT and
CASTIEL 2.

5 Task 3.4: Exascale Engineering

In the previous deliverable (WP3-D3.1) some progress has been reported towards reaching
large-scale readiness required in exascale simulations. This early work requires the direct
interaction of the application’s user/developer, the HPC centre’s operation and software support
staff as well as the HPC centre’s on-site staff to ensure an efficient execution of the run. Since
achieving such a task is challenging, , Task 3.4 continues the work that has been done so far
and has been reported WP3-D3.1.

5.1 CODA

During the reporting period, two main tasks were carried out: First, we evaluated the
performance and scalability of CODA, FlowSimulator and Spliss delivered in container images
on the DLR HPC systems and compared them to the installations using the native software
stack of the system. Second, we evaluated the newly developed hierarchical mesh partition
method in FlowSimulator.

First, CODA, FlowSimulator, Spliss and all the workflow dependencies can now be delivered
as a single container image. Thus, CODA can be executed in a container on any HPC system
independently of the installed software stack. The main benefits are easier delivery to users and
customers, easier deployment on different systems and significantly improved portability. An
evaluation of the container images with UC-1 on the DLR HPC systems showed comparable
performance and scalability to the installation using the native software stack of the system.
Thus, the delivery and deployment of the containerised workflow will be become the default
for the next internal releases.

Second, after investigating several improvements to mesh partitioning in the previous reporting
period, we have now evaluated a newly developed hierarchical partitioning method. The
hierarchical partitioning method distributes the mesh at three levels: first, it distributes the mesh
across all involved compute nodes, then within each node across all MPI processes, and finally
for each MPI process across all threads. This method is flexible to use different graph
partitioners such as Parmetis or Zoltan for each level. This method significantly speeds up mesh
partitioning for large meshes and large numbers of cores (up to one order of magnitude), while
not degrading the resulting load balance for the CFD solver. The improved mesh partitioning
also allows simulations of larger meshes with more than one billion elements and we are now
able to successfully run simulations on 131,072 cores (the full DLR CARO system).

5.2 AVBP

Efforts to bring AVBP to exascale-ready performance have focused on the portability of the
code for AMD GPUs. Indeed, at the moment the largest clusters of the EuroHPC JU and in the
world are equipped with AMD Mi250 GPUs and MI300A APUs.

An effort was done to try using OpenMP instead of OpenACC through automatic translation
tools, since it was hinted by AMD that this should lead to better performance on their hardware
and would also allow usage of Intel GPUs. However, OpenMP does not possess equivalence
for all OpenACC constructs and handles management of complex data structure differently,
notably derived types cannot be partially uploaded on the GPU memory.

Experiments with AMD’s compiler were unsuccessful as it suffers from multiple bugs when
trying to generate OpenMP GPU kernels from AVBP’s code.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 44 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Surprisingly, compilation and execution on Nvidia hardware using NVHPC compiler were
successful, although with a strong performance penalty which mainly comes from implicit
memory copies between the host and the device.

The code supports GPU acceleration using the OpenACC framework. Therefore, compatibility
for now remains limited to HPE systems equipped with the CRAY compiler suite. Fortunately,
we have access to two of those systems in Europe, the ADASTRA Tier 1 system from
GENCI/CINES in Montpellier France and LUMI G at CSC Finland.

A previous prototype implementation using OpenACC on AMD was able to run large non-
reactive simulations (Figure 26). Benefitting from an access to ADASTRA new MI300A
partition, we resumed work on this prototype. We managed to identify three major issues from
the Cray compiler in its OpenACC implementation

* The !SACC LOOP SEQ directive does not work
* The ISACC KERNELS construct is broken in some cases
* The !$ACC DECLARE directive is also broken

We were able to implement workarounds for those issues and managed to run H2 burner
reactive simulations at large scale using up to 96 of the 112 MI300A APUs on ADASTRA.
Figure 27 shows the performance using various mesh sizes. Overall AVBP exhibits similar
behaviour than on Nvidia hardware, with good strong scalability and excellent weak scalability.
However, the overall performance of AMD cards is still underwhelming in this case, a single
MI300A providing less than twice the performance of an A30 card, while having six times the
memory bandwidth. Further work will investigate this performance gap, but overall, we are
essentially limited by the compilers at the moment.

6 4000000
‘O s,mpi/node/iteration
Cells/mpi

4,5 3000000

2000000

1,5 1000000

MircoSecons.GPU/ier/mesh node
w
Number of mesh cells per GPU

16 32 64 128 256
GPUs

Figure 26: Strong scaling of AVBP on the ADASTRA system using 4 Mi250 per node. Nonreactive
windfarm case.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 45 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

better

ris

us) Lowe
\

RCT {
i
|

1 2 4 8 16 32 64 96

Number of GPU/APU used

Figure 27: Scaling of AVBP on the ADASTRA system using 4 MI300A per node + comparison with
CERFACS’ A30 nodes. H2 burner reactive case.

5.3 m-AIA

The m-AIA code has been thoroughly tested on the HAWK supercomputer at HLRS, and
deployments on the EuroHPC systems Vega, MeluXina, Discoverer and Karolina were
successfully carried out. Strong and weak scalings for the m-AIA code using coupled FV-DG
benchmarks have been performed. Three different configurations concerning the number of
MPI ranks used per node and usage of OpenMP threads have been tested to compare the
achievable performance. That is, 64 MPI ranks are used with each 1 or 2 OpenMP threads, and
128 MPI ranks with each 1 thread are placed on a compute node in different runs. All runs have
been repeated at least two times in different job allocations and the best runs in terms of
performance were selected. For the strong scaling a benchmark with about 150 million FV cells
and 130 million degrees of freedom for the DG solver was used. As a baseline for the scaling a
minimum of 4 compute nodes are used due to memory constraints. As evident by the curves in
Figure 28 showing the total time to complete a timestep the m-AIA code was able to achieve
excellent scalability up to the maximum of 256 or 512 compute nodes used during testing, while
for each system the best performing configuration is shown. The weak scalability for m-AIA
was tested using a coupled FV-DG benchmark with around 2.1 million cells per node. The time
required per timestep is shown in Figure 28, starting at one node the scaling is performed up to
256 nodes, which corresponds to a problem size of 500 million cells in total. Overall, a good
weak scalability is achieved when using 128 MPI ranks per node with the communication
overhead increasing only slowly with higher node numbers. As evident, the tested HPC systems
all achieve a comparable performance, while pronounced differences are only visible for 256
nodes. In summary, the scaling results show a very good strong scalability and a good weak
scalability for the m-AIA code on the four tested EuroHPC systems.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 46 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

m-AlA FV-DG benchmark 1.5*108 cells / 1.3*108 DOF m-AlA FV-DG weak scaling / 2.1M cells per node
EuroHPC system [procs/node, threads] 128 procs/node, 1 threads
10 T T T T T 0.35
0.3
X & 0.25 A
Q 1F 3 2 R o
o A PO - e
2) 2 02 el s — =TT ;e O
“E’ linear 2 = -
£ B B £ o015 ideal
T gqf ¢ Vesalsd.2 J @ -G - Vega
E MeluXina [64, 2] = 04 MeluXina 4
—4&— Discoverer [128, 1] —#%— Discoverer
— &« Karolina [64, 1] 005 F —A— Karolina -
001 1 1 1 1 o . , . IEI Hawk
4 16 64 256 512] 4 16 64 256
Number of nodes Number of nodes

Figure 28: Strong (left) and weak (right) scalings for coupled FV-DG m-AIA benchmarks on different
EuroHPC CPU based systems.

In the first project year, the strong scalability of a realistic coupled CFD/CAA chevron jet
application with m-AIA on HAWK has been demonstrated. The setup included about 300
million CFD cells and 1 billion CAA DoF, representing a smaller scale run according to the
exascale execution profile defined in WP2 for UC-3. The code showed excellent scalability
when going from 2048 up to 262144 MPI processes, i.e., the maximum allocation size on
HAWK, achieving about 86 simulation timesteps per second compared to 0.68 for the baseline.
Building upon that, since the second year of the project and in collaboration with HLRS a large-
scale chevron nozzle CFD simulation of 3.7 billion cells was initially tested and then run on
2048 nodes of the HAWK system. Furthermore, the corresponding coupled CFD-CAA
simulation, adding 4.9 billion DOF for the CAA part, was run in an XXL session on the full
HAWK system using 4096 nodes totalling to 524k CPUs. The workload distribution for the
coupled case is compared in Figure 29 on 256 and 4096 nodes, using 64 MPI processes per
node. The dynamic load balancing approach in m-AIA is used to distribute the workload among
processes. At high node counts it becomes increasingly difficult to eliminate all imbalances,
due to very small partition sizes, while simultaneously the per-process performance benefits
from a reduced memory footprint resulting in improved cache usage. Figure 30 shows the
scalability of the large-scale simulations, compared to baseline runs on 256 nodes a nearly linear
speedup is obtained on 2048 and 4096 nodes of Hawk, i.e., a full HPC system can be used
effectively for aeroacoustic predictions with m-AIA. The results show that the numerical
approach is highly scalable, and it enables the execution of large-scale use cases on a pre-
exascale level.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 47 of 54

Public

Copyright © 2025 Members of the EXCELLERAT P2 Consortium

1400

1200

1000

[«2]
o

800

a
o

ey
o

600

Wall time/step [ms]

400

Wall time/step [ms]

w
o

200 -

0 1

N
o

-
o

o

1 4096

8192

12288 16384 1 65536 131072 196608 262144

Core number

Core number

communication (CAA)
communication (CFD)
computation (CAA)
coupling

computation (CFD)
Maximum load
Average load

——— Minimum load

Figure 29: Comparison of workload distribution of large-scale coupled CFD-CAA simulation on 256 and

time/timestep [s]

4096 Hawk nodes.
] T T T T
1F -
01k linear
' — % - pure CFD \
—4&—- coupled CFD-CAA
1 1 L L 1
256 512 1024 2048 4096

Number of nodes

Figure 30: Scalability of large-scale CFD and coupled CFD-CAA simulations on Hawk.

5.4 Alya

Most HPC applications operate inside a fixed resource allocation which cannot be adjusted at
runtime. This work revolves around integrating the computational mechanics simulator Alya
with the malleability framework DMR to enable physics simulations which can resize at
runtime to operate inside a desired efficiency range. In a previous work [15], we have developed
a workflow to ensure a target communication efficiency, as shown in Figure 31.

Project 101092621

EXCELLERAT P2 Deliverable D3.2

Page 48 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Policies and
efficiency criteria PY TS
How
New amount of E ®
resources S b.lue ' ef;:gient TALP
r; -3 ;
Alya's
efflmency
Alya
Want more & & Want less

Figure 31: Optimizing the resources. Workflow for elastic computing of CFD simulations, involving
different codes and libraries: Alya (CFD), TALP (efficiency measures) and COMPSs (elastic computing).

The workflow ensures an elastic computing methodology that adapts at runtime the resources
allocated to a simulation automatically. The criterion to control the required resources is based
on a runtime measure of the communication efficiency of the execution. According to some
analytical estimates, the resources are then expanded or reduced to fulfil this criterion and
eventually execute an efficient simulation. The methodology was based on the CFD code Alya
together with a runtime library TALP [16] to measure performance metrics, and finally
COMPS:s to orchestrate the workflow and interact with SLURM workload manager.

The work proposed here follows a different strategy, although the main objectives are
maintained, that is to ensure a parallel efficient simulation. The strategy is now based on DMR
runtime, which handles the MPI communicator and oversees expanding or reducing the
resources. In this new approach, TALP is now integrated in DMR library [17,18], thus
simplifying the interactions of the CFD code Alya and the computing environment. The

workflow is illustrated in Figure 32.
Not good

Am i efficient? TALP

blue whale

Good

Better

== QRER B8

Figure 32: Workflow using Alya and DMR to control the communication efficiency.

In a first stage, we have worked on the interfacing of DMR with Fortran language, as DMR
which was originally written in C. A mini-app reproducing the workflow of Alya has been
finalised and tested. The library together with the mini-app have been containerised and can be
found here [19].

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 49 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Task 3.4 has several objectives, one of which is to focus on achieving optimal efficiency and
performance in large-scale workflows. The proposed flexible workflow is designed to
dynamically manage parallel efficiency during runtime by selecting the appropriate resources
based on metrics such as communication efficiency and load balance. Predicting the efficiency
of a simulation beforehand is challenging, primarily because strong scalabilities are typically
evaluated relative to a baseline. If the baseline is already in an unfavourable state, this approach
can yield highly inaccurate results. Furthermore, a priori strong scalability tests fail to provide
insights into how parallel efficiency deteriorates. Parallel efficiency is affected by two key
factors: load balance and communication efficiency, each of which can be addressed using
distinct methodologies. Load balance issues can be rectified through redistribution or the
utilisation of runtime mechanisms at the node level, such as DLB. On the other hand,
communication efficiency can be enhanced through the strategy proposed here, which involves
resource control, improved scheduling, or better repartitioning strategies, among other
techniques.

The task description specifies that “These simulations require the direct interaction of the
application’s user/developer, the HPC centre’s operation and software support staff as well as
the HPC centre’s on-site staff”. Specifically, the work on malleability requires active
cooperation between the CFD code developer (Alya) and the runtime developer (DMR), and
their interactions with the support team, especially since DMR interfaces closely with SLURM.
To this end, DMR has been fully integrated in Alya, through 3 branches, to:

e Create the Fortran wrapper and adapt the build of Alya.

o Commit hash: ¢359796d303c5328{fe9a0f38764402ecd8f427
e C(lean the interface and debugging.

o Commit hash: 9¢9c06d00e8d7e3e2ce9d3d728c2e24c3eb6516¢
e Add tests and include automatic prediction of the target nodes.

o Commit hash: 2b12387fa7d6e78a90b69685541df0b1574056d0

On the DMR side, the library was refactored to integrate new OpenMPI implementations and
change the spawn strategy.

Figure 33 shows an instance of Alya running with DMR when applying the reconfiguration
policy described. The target communication efficiency area is shaded in grey. Process count
starts around 1000 and is increased until CE drops, then process count is reduced, and CE
remains within the target region. Results have been presented at the 17th Joint Laboratory for
Extreme Scale Computing (JLESC) Workshop, 13 - 15 May 2025, that took place at the
Argonne National Laboratory (ANL) in Argonne (USA).

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 50 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

- AN A = 7o
\ ' '.

90 { e i L7000
£ e L6000
B
g'801 -
& 5
(¥} | -
= 5000 o
§ : ¢
e { ! o
§70 : /VW’ 4000 £
5 f | z
£ i f =
§ prommmee e ' / +3000

601 [|

I —
\ 2000
\ —— Communication Efficiency
{ H \
Sl [! MPI Processes 1000
0 1000 2000 3000 4000 5000 6000
Iterations

Figure 33: Dynamic resizing of Alya using DMR.

Next, the DMR library was tested using the same case and same target efficiency as before but
allowing six jobs to run concurrently. The methodology thus consists of a self-adapting batch
system. Figure 34 shows the evolution of the distribution of cores allocated to the different jobs.
The discontinuous dark line shows the total amount of resources used while maintaining the CE
in the target range.

Processes per Second for Each Job and Total Processes

1750 4 e e : D S i s ‘I
: : pomn e -
i i 1 i !
1 1 1 "= H
1500 4 1 1 1 1
1 1 (m———— I :
1 : ' -
I 1 ' I == 17
1250 A ! . = - |
D - 1 ! --- Total Processes per Second Malleable
7 | 1 =8 b
H - H : —— Job 0 Processes
o 1000 1 ! J ! —— Job 1 Processes
% | emms —— Job 2 Processes
. 750 4 : Ii —— Job 3 Processes
- i —— Job 4 Processes
= —— Job 5 Processes
500 1 i
250 A - i IJ | |
0_
0 500 1000 1500 2000 2500 3000

Time (Seconds, Starting from 0)

Figure 34: Evolution of the distribution of cores to run 6 concurrent jobs. The discontinuous dark line
shows the total amount of resources used while maintaining the CE in the target range.

5.5 STREAmS

The use of STREAmS involves a number of operations and a workflow that can become
challenging especially for the most computationally demanding cases. We summarise
significant points in this regard with particular emphasis on the development activity of the past
18 months.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 51 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

Workflow: the preparation of the mesh and of the field used for the initial and boundary
conditions involves a preliminary RANS run, alongside some interpolation and processing. This
preparatory workflow is explained in more detail in deliverable D2.15 [20] and has been almost
fully automated to minimise user effort and improve the reproducibility of the simulations
performed.

Grid generation: Construct2D has been significantly improved in a number of respects, such
as the shape of the C-mesh to improve the quality of the grid around the trailing edge and the
ability to more explicitly define grid spacing along both wall-normal and wall-tangent
directions. Construct2D has also been equipped with the ability to make restarts useful in cases
of particularly large grids. In addition, for even more challenging cases, an alternative workflow
has been developed in which Construct2D produces only a sparse grid and then an ad-hoc C-
mesh refinement application produces the final grid. This alternative workflow is not necessary
for the grids used for EXCELLERAT simulations but is prospectively useful for simulations at
even larger scales.

Visualisation: visualisation of STREAmS results can be done by reading the 3D fields, which,
however, can become very challenging for large-scale simulations. Alternatively, slice
extraction along coordinated planes and saving using the plot3D format has been implemented.
Implementation of in situ visualisation functionality using Catalyst2 technology has also been
completed as part of WP4 activity, allowing images to be generated directly during simulation
execution.

Statistics: statistics involve averages along the z-direction of periodicity that are performed
run-time. Time averages can then be performed at post-processing time or also run-time. Fully
run-time statistics can be particularly useful for very large simulations.

Time-spectra: spectra are also normally performed as post-processing. However, run-time
spectra computation has also been implemented. Spectra are performed according to the Welch
strategy with two partially overlapping windows.

Input-output: for demanding calculations, the output of 3D fields is normally disabled, but it
is still necessary to save whole fields for checkpointing purposes. For this reason, two modes
are provided for check-pointing: the first is MPI-I/O based and allows a single file to do
simulation restarts, while in the second mode each process saves its own restart file. For
particularly large cases the serial mode is usually preferable. On the input side, several modes
of read grid management have been implemented. In particular, it is possible to have a
completely parallel management of the 2D grid (including metric generation). For particularly
large cases, it is possible to decompose the grid before starting the simulation so that each
process can read its part of the grid more efficiently.

Post-processing: the main post-processing applications, namely the statistics analysis
application and the application for spectra, have been completed. The functionality of these
tools depends on the case under consideration, and specific work was devoted to the airfoil
cases considered in this project.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 52 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

6 Conclusion

Progress has been made across the codes to meet the specific requirements of the use cases.
Scalability has been evaluated on both CPU and GPU-based supercomputers. Several
enhancements have been obtained. New developments have also been achieved in the porting
and optimisation of the codes for GPU architectures. CINECA and URMLS are adopting a
multi-paradigm strategy in the development of their STREAmS code, thus enabling
compatibility with a broad spectrum of hardware platforms. All teams are making steady and
satisfactory progress within WP3. The algorithmic and computational strategies for
implementing their respective use cases are becoming increasingly well-defined, and efforts
dedicated to WP3 have intensified in recent months.

Task 3.1 is dedicated to enhancing the computational performance of the simulation methods
used in the use cases, targeting both inter-node and intra-node optimisation. As previously
noted, several teams have concentrated on assessing and refining their parallelisation strategies.
Meanwhile, others have focused on boosting performance on GPU accelerators or exploring
solutions capable of supporting multiple programming paradigms.

Task 3.2 shows that HBM seems to be profitable for codes in EXCELLERAT. This HBM
combined with the large capacities of DDR (also available in Rhea) triggers challenging
memory allocations to benefit both the bandwidth of HBM and the capacity of DDR. Future
work aims at extracting the Roofline profiles to see if some common classification of codes can
be extracted. More mini-apps still need to be provided by code owner to consolidation this
classification. Also, with such classification, the aim is to be able to suggest optimisation per
profiles. Some first investigation has already been done with outer loop vectorisation, but some
other optimisation can be considered: impact of vectorisation, interleaving, bandwidth
saturation, memory allocation layout, and mixed precision. Finally, some work on LLVM-flang
is required to handle efficiently the various code.

Task 3.3 comprises three core aspects, revolving around a unified testing platform serving the
purposes of validation, deployment, and benchmarking. The efforts have focused on adopting
the tools defined by the CASTIEL 2 project managing the coordination and support for National
Competence Centres and Centres of Excellence on a European level, for two of the codes, Alya
and AVBP. Moreover, significant work has been done on the introduction of an ad-hoc pipeline
for automatic testing, validation and benchmarking for the STREAmS application, which was
lacking any mechanism for it.

Task 3.4 is focused on the specific developments required to extend the simulations workflows
from Task 3.1 to achieve the large-scale readiness required in exascale simulations. DLR
compared the performance of their codes using container images to the installations using the
native software stack of the system. They also evaluated the newly developed hierarchical mesh
partition method in FlowSimulator. AVBP have focused on the portability of the code for AMD
GPUs. They tried using OpenMP instead of OpenACC through automatic translation tools. The
m-AlA code has thoroughly tested their code on the HAWK supercomputer at HLRS. Also,
deployments on the EuroHPC systems Vega, MeluXina, Discoverer and Karolina were
successfully carried out. The Alya team has done significant progress with an elastic computing
methodology that adapts the resources allocated to a simulation automatically at runtime using
the DMR library.

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 53 of 54

Public
Copyright © 2025 Members of the EXCELLERAT P2 Consortium

7 References

[1] EXCELLERAT P2: Success Story: Enabling parallel mesh adaptation with Treeadapt.
https://www.excellerat.eu/success-story-enabling-parallel-mesh-adaptation-with-treeadapt/

[2] KalpaTARU - Toolkit for Topology-aware Load-balancing and Adaptation of Unstructured
Meshes. Library repository: https://gitlab.com/cerfacs/kalpataru

[3] Cédric Chevalier, Francois Pellegrini. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel Computing, 2008, 34 (6-8), pp.318-331. https://inria.hal.science/hal-
00402893

[4] ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering. Library
repository: https://github.com/KarypisLab/ParMETIS

[5] Anubis, a codemetrics tool. Library repository: https://gitlab.com/cerfacs/anubisgit

[6] POP: Performance Optimisation and Productivity, a centre of Excellence in HPC. Website:
https://pop-coe.eu/

[7] EXCELLERAT P2 D3.1: Report-on-Exa-Enabling-Methodologies.
https://www.excellerat.eu/wp-

content/uploads/2024/02/EXCELLERAT P2 WP3 D3.1 Report-on-Exa-Enabling-
Methodologies.pdf

[8] H. Owen et al., "Alya towards Exascale: Optimal OpenACC Performance of the Navier-
Stokes Finite Element Assembly on GPUs," 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), San Francisco, CA, USA, 2024, pp. 408-416, doi:
10.1109/IPDPS57955.2024.00043.

[9] Soldati, G., Ceci, A. & Pirozzoli, S. FLEW: A DNS Solver for Compressible Flows in
Generalized Curvilinear Coordinates. Aerotec. Missili Spaz. 103, 413-425 (2024).
https://doi.org/10.1007/s42496-024-00199-4

[10] Sathyanarayana, S., Bernardini, M., Modesti, D., Pirozzoli, S., & Salvadore, F. (2025).
High-speed turbulent flows towards the exascale: STREAmS-2 porting and performance. In
Journal of Parallel and Distributed Computing (Vol. 196, p. 104993). Elsevier BV.
https://doi.org/10.1016/j.jpdc.2024.104993

[11] Salvadore, F., Rossi, G., Sathyanarayana, S. et al. OpenMP offload toward the exascale
using Intel® GPU Max 1550: evaluation of STREAmS compressible solver. J Supercomput 80,
21094-21127 (2024). https://doi.org/10.1007/s11227-024-06254-y

[12] Extrae, generate Paraver trace-files for post mortem analysis. https://tools.bsc.es/extrae
[13] Paraver: a flexible performance analysis tool. https://tools.bsc.es/paraver

[14] Liihrs Sebastian, Rohe Daniel, Schnurpfeil Alexander, Thust Kay, & Frings Wolfgang.
(2016). Flexible and Generic Workflow Management. In Advances in Parallel Computing. IOS
Press. _https://doi.org/10.3233/978-1-61499-621-7-431

[15] Houzeaux, G. et al. Dynamic resource allocation for efficient parallel CFD simulations.
"Computers and fluids", 2022, vol. 245, article 105577, p. 1-13.

[16] TALP for monitoring the Programming Model efficiencies.
https://pm.bsc.es/ftp/dlb/doc/user-guide/how_to_run_talp.html

[17] DMR library: S. Iserte, R. Mayo, E. S. Quintana-Orti and A. J. Pefia, "DMRIib: Easy-
Coding and Efficient Resource Management for Job Malleability," in IEEE Transactions on
Computers, vol. 70, no. 9, pp. 1443-1457, 1 Sept. 2021, doi: 10.1109/TC.2020.3022933.

[18] DMR library repository: https://gitlab.bsc.es/siserte/dmr/-/tree/alya?ref type=heads

[19] Fortran miniapp using DMR: https://gitlab.bsc.es/siserte/sleepmalleablefortran.

[20] Sergio Pirozzoli, Giulio Soldati & Francesco Salvadore (2025) - EXCELLERAT P2
D2.15: Updated Report on the STREAmS Application Use Case

Project 101092621 EXCELLERAT P2 Deliverable D3.2 Page 54 of 54

	Executive Summary
	Table of Contents
	Table of Figures
	Table of Tables
	1 Introduction
	2 Task 3.1 Performance & Efficiency Engineering
	2.1 CODA
	2.2 AVBP
	2.3 m-AIA
	2.4 Alya and Sod2d
	2.5 Neko
	2.6 STREAmS
	2.7 L2G, OpenFOAM, Raysect

	3 Task 3.2: Co-design lab for emerging technologies
	3.1 Co-Design
	3.2 OpenFOAM
	3.3 Neko
	3.4 m-AIA
	3.5 STREAmS
	3.6 Co-Design Service for exaSim project

	4 Task 3.3: Testing, Validation and Deployment
	4.1 STREAmS automatic testing, validation and benchmarking

	5 Task 3.4: Exascale Engineering
	5.1 CODA
	5.2 AVBP
	5.3 m-AIA
	5.4 Alya
	5.5 STREAmS

	6 Conclusion
	7 References

