Preparing Cloud Physics for Exascale

Author: Nick Brown, EPCC
Accelerating cloud physics and atmospheric models using GPUs, KNLs and FPGAs

The Met Office NERC Cloud model (MONC) is an atmospheric model used throughout the weather and climate community to study clouds and turbulent flows. This is often coupled with the CASIM microphysics model, which provides the capability to investigate interactions at the millimetre scale and study the formation and development of moisture. One of the main targets of these models is the problem of fog, which is very hard to model due to the high resolution required – for context the main UK weather forecast resolves to 1km, whereas the fog problem requires 1metre or less. Continue reading “Preparing Cloud Physics for Exascale”

New analysis methods facilitate the evaluation of complex engineering data

Author: Veronika Scheuer, Fraunhofer SCAI
A further increase in the performance of supercomputers is expected over the next few years. So-called exascale computers will be able to deliver more precise simulations. This leads to considerably more data. Fraunhofer SCAI develops efficient data analysis methods for this purpose, which provide the engineer with detailed insights into the complex technical contexts. Continue reading “New analysis methods facilitate the evaluation of complex engineering data”

EXCELLERAT to Bring HPC Applications to Engineering Industry

Author: Lena Bühler, HLRS
High-performance computing (HPC) specialists are looking forward to the technological improvements that should arrive in the coming years as supercomputers approach the exascale. New approaches in hardware design (including new processors and high-bandwidth memory) and in application development (for example, code parallelization and data processing) will expand the power of supercomputing and therefore make it possible to solve new kinds of complex problems. Continue reading “EXCELLERAT to Bring HPC Applications to Engineering Industry”

EU-Project helps Engineering SME Improve Competitive Position

Current practice in the design of hydro-power plants is to determine empirically the most suitable design in a series of time-consuming experiments. However, SMEs in this sector have to face private and public tenders to sell their turbines in both national and global markets, where the competition is very strong and the development time is very short. The challenge facing Zeco was therefore to improve their design processes to remain competitive. Continue reading “EU-Project helps Engineering SME Improve Competitive Position”

HPC helps to make combustion plants safe and cost-efficient

There’s no getting around High Performance Computing (HPC) for RECOM Services, a Stuttgart-based small and medium-sized enterprise (SME) for computational process optimization and problem analysis in industrial combustion. Their specifically developed 3D-simulationssoftware RECOM-AIOLOS is able to illustrate combustion processes in virtual reality without disturbing the ongoing operation. Naturally, both engineering and HPC know-how is needed in order to succeed. Continue reading “HPC helps to make combustion plants safe and cost-efficient”

A French SME boosts its offshore engineering service portfolio thanks to European HPC initiatives

The French SME, PRINCIPIA, located in southern France, manages to add to its portfolio an innovative service that helps improve the control of the dynamical behaviour of offshore structures while strongly reducing computing time. The La Ciotat-based company, which specializes in applied engineering for the offshore sector (oil and gas and renewable marine energy) and is the main developer of reference software in this field, has successfully adapted one of its simulation codes, DEEPLINES, to run on a high performance computing (HPC) system. Continue reading “A French SME boosts its offshore engineering service portfolio thanks to European HPC initiatives”

New supercomputing record set by ANSYS, HLRS and Cray

ANSYS, the High Performance Computing Center (HLRS) of the University of Stuttgart and Cray Inc. have set a new supercomputing world record enabling organizations to create complete virtual prototypes of products faster than ever. ANSYS Fluent has been scaled to 172,032 computer cores on the HLRS supercomputer Hazel Hen, a Cray XC40 system, running at 82 percent efficiency. This is nearly a 5x increase over the record set two years ago when Fluent was scaled to 36,000 cores.

fluent_pic

Continue reading “New supercomputing record set by ANSYS, HLRS and Cray”

EPCC develops new modelling techniques for the chemical and oil and gas industry

Global equipment manufacturers in the chemical and oil and gas industry, such as Sulzer Chemtech, often rely on commercial Computational Fluid Dynamics (CFD) software tools for the design of their equipment. These commercial codes are currently unable to handle complex twophase flows which exhibit challenging interfaces between gas and liquids such as travelling waves. The formation of interfacial waves, their frequency and amplitude are particularly difficult to model in industrial environments.

Continue reading “EPCC develops new modelling techniques for the chemical and oil and gas industry”