EXCELLERAT successfully closes its first chapter

The first funding phase of EXCELLERAT has come to an end on 31st May 2022. Over the past three and a half years, the Centre’s consortium consisting of 13 European partners provided expertise on how data management, data analytics, visualisation, simulation-driven design and co-design could benefit engineering, in particular in the aerospace, automotive, energy and manufacturing sectors. Overall, EXCELLERAT’s work strongly focused on improving computational efficiency, dynamic mesh adaptation, load balancing, scalable data handling, usability (visualisation and workflow tools), as well as investigating novel architectures and opportunities for co-design and developing more efficient numerical methods.

Read More »

White Paper: The EXCELLERAT Best Practice Guide

The EXCELLERAT Best Practise Guide is an outcome of EXCELLERAT, the European Centre of Excellence for Engineering Applications. The project aimed at establishing the foundation of a central European knowledge and competence hub for all stakeholders in the usage and exploitation of high-performance computing (HPC) and high-performance data analytics (HPDA) in engineering. Having worked together throughout the 42 months of the initial funding phase, we are presenting this Best Practice Guide of ways and approaches to execute engineering applications on state of the art HPC-systems in preparation for the exascale era.

Read More »

White Paper: FPGAs for accelerating HPC engineering workloads – the why and the how

Running high performance workloads on Field Programmable Gate Arrays (FPGAs) has been ex-plored but is yet to demonstrate widespread success. Software developers have traditionally felt a significant disconnect from the knowledge required to effectively exploit FPGAs, which included the esoteric programming technologies, long build times, and lack of familiar software tooling. Fur-thermore, for the few developers that invested time and effort into FPGAs, from a performance perspective the hardware historically struggled to compete against latest generation CPUs and GPUs when it came to Floating Point Operations per Second (FLOPS).

Read More »

Explore our flyers, deliverables, and more

Success Story: In situ VR visualisation of Nek5000 simulations with Vistle

Nek5000 cases that use Exascale level performance compute data on very large grids. Writing this data to disk frequently becomes a major run time bottleneck, while handling all the data on disk comes with its own challenges. With increasing data sizes and complexity analysing the usually 3D data with conventional 2D methods becomes even harder. Running large simulations is also costly, therefore errors should better be identified rather sooner than later.

Read More »

Success Story: Running AVBP Industrial code on Arm architectures

With the diversification of the micro-processor catalogue for High-Performance systems, porting and evaluating software performance on Arm-based architectures has become an imperative step for code developers. For core performance to multi-node scalability, real application benchmarks remain elusive. Given the myriad of Arm flavours available, a comprehensive real case benchmark would give developers and users a first look for the future usage of the European Processor Initiative (EPI) and Arm-based leadership class systems.
In collaboration with Arm Ltd., CERFACS has performed a first benchmark using the AVBP code, a state-of-the-art Navier Stokes solver on unstructured grids for reactive compressible flows written in Fortran and based on MPI for parallelism.

Read More »

Press release: EXCELLERAT CoE supports COVID-19-related research

A group of researchers from EXCELLERAT’s consortium partner SSC-Services GmbH, an IT service provider in Böblingen, Germany and the High-Performance Computing Center Stuttgart (HLRS) is supporting the German Federal Institute for Population Research (Bundesinstitut für Bevölkerungsforschung, BiB). SSC has developed an intelligent data transfer platform, which enables the BiB to upload data, start simulations and download results. The platform supports the work of BiB researchers in predicting the demand for intensive care units during the COVID-19 pandemic.

Want more

Follow us